scholarly journals Skin Disease Detection: Machine Learning vs Deep Learning

Author(s):  
Samir Bandyopadhyay ◽  
Amiya Bhaumik ◽  
Sandeep Poddar

Skin disease is a very common disease for humans. In the medical industry detecting skin disease and recognizing its type is a very challenging task. Due to the complexity of human skin texture and the visual closeness effect of the diseases, sometimes it is really difficult to detect the exact type. Therefore, it is necessary to detect and recognize the skin disease at its very first observation. In today's era, artificial intelligence (AI) is rapidly growing in medical fields. Different machine learning (ML) and deep learning(DL) algorithms are used for diagnostic purposes. These methods drastically improve the diagnosis process and also speed up the process. In this paper, a brief comparison between the machine learning process and the deep learning process was discussed. In both processes, three different and popular algorithms are used. For the machine Learning process Bagged Tree Ensemble, K-Nearest Neighbor (KNN), and Support Vector Machine(SVM) algorithms were used. For the deep learning process three pre-trained deep neural network models

2019 ◽  
Vol 11 (4) ◽  
pp. 1766-1783 ◽  
Author(s):  
Suresh Sankaranarayanan ◽  
Malavika Prabhakar ◽  
Sreesta Satish ◽  
Prerna Jain ◽  
Anjali Ramprasad ◽  
...  

Abstract Today, India is one of the worst flood-affected countries in the world, with the recent disaster in Kerala in August 2018 being a prime example. A good amount of work has been carried out by employing Internet of Things (IoT) and machine learning (ML) techniques in the past for flood occurrence based on rainfall, humidity, temperature, water flow, water level etc. However, the challenge is that no one has attempted the possibility of occurrence of flood based on temperature and rainfall intensity. So accordingly Deep Neural Network has been employed for predicting the occurrence of flood based on temperature and rainfall intensity. In addition, a deep learning model is compared with other machine learning models (support vector machine (SVM), K-nearest neighbor (KNN) and Naïve Bayes) in terms of accuracy and error. The results indicate that the deep neural network can be efficiently used for flood forecasting with highest accuracy based on monsoon parameters only before flood occurrence.


2020 ◽  
Vol 12 (1) ◽  
pp. 813-820
Author(s):  
Guangyuan Kan ◽  
Ke Liang ◽  
Haijun Yu ◽  
Bowen Sun ◽  
Liuqian Ding ◽  
...  

AbstractMachine learning-based data-driven models have achieved great success since their invention. Nowadays, the artificial neural network (ANN)-based machine learning methods have made great progress than ever before, such as the deep learning and reinforcement learning, etc. In this study, we coupled the ANN with the K-nearest neighbor method to propose a novel hybrid machine learning (HML) hydrological model for flood forecast purpose. The advantage of the proposed model over traditional neural network models is that it can predict discharge continuously without accuracy loss owed to its specially designed model structure. In order to overcome the local minimum issue of the traditional neural network training, a genetic algorithm and Levenberg–Marquardt-based multi-objective training method was also proposed. Real-world applications of the HML hydrological model indicated its satisfactory performance and reliable stability, which enlightened the possibility of further applications of the HML hydrological model in flood forecast problems.


2020 ◽  
pp. 471-476
Author(s):  
Gitanjali Wadhwa ◽  
Mansi Mathur

The important part of female reproductive system is ovaries. The importance of these tiny glands is derived from the production of female sex hormones and female gametes. The place of these ductless almond shaped tiny glandular organs is on just opposite sides of uterus attached with ovarian ligament. There are several reasons due to which ovarian cancer can arise but it can be classified by using different number of techniques. Early prediction of ovarian cancer will decrease its progress rate and may possibly save countless lives. CAD systems (Computer-aided diagnosis) is a noninvasive routine for finding ovarian cancer in its initial stages of cancer which can keep away patients’ anxiety and unnecessary biopsy. This review paper states us about how we can use different techniques to classify the ovarian cancer tumor. In this survey effort we have also deliberate about the comparison of different machine learning algorithms like K-Nearest Neighbor, Support Vector Machine and deep learning techniques used in classification process of ovarian cancer. Later comparing the different techniques for this type of cancer detection, it gives the impression that Deep Learning Technique has provided good results and come out with good accuracy and other performance metrics.


Author(s):  
S. Vijaya Rani ◽  
G. N. K. Suresh Babu

The illegal hackers  penetrate the servers and networks of corporate and financial institutions to gain money and extract vital information. The hacking varies from one computing system to many system. They gain access by sending malicious packets in the network through virus, worms, Trojan horses etc. The hackers scan a network through various tools and collect information of network and host. Hence it is very much essential to detect the attacks as they enter into a network. The methods  available for intrusion detection are Naive Bayes, Decision tree, Support Vector Machine, K-Nearest Neighbor, Artificial Neural Networks. A neural network consists of processing units in complex manner and able to store information and make it functional for use. It acts like human brain and takes knowledge from the environment through training and learning process. Many algorithms are available for learning process This work carry out research on analysis of malicious packets and predicting the error rate in detection of injured packets through artificial neural network algorithms.


2019 ◽  
Vol 20 (5) ◽  
pp. 488-500 ◽  
Author(s):  
Yan Hu ◽  
Yi Lu ◽  
Shuo Wang ◽  
Mengying Zhang ◽  
Xiaosheng Qu ◽  
...  

Background: Globally the number of cancer patients and deaths are continuing to increase yearly, and cancer has, therefore, become one of the world&#039;s highest causes of morbidity and mortality. In recent years, the study of anticancer drugs has become one of the most popular medical topics. </P><P> Objective: In this review, in order to study the application of machine learning in predicting anticancer drugs activity, some machine learning approaches such as Linear Discriminant Analysis (LDA), Principal components analysis (PCA), Support Vector Machine (SVM), Random forest (RF), k-Nearest Neighbor (kNN), and Naïve Bayes (NB) were selected, and the examples of their applications in anticancer drugs design are listed. </P><P> Results: Machine learning contributes a lot to anticancer drugs design and helps researchers by saving time and is cost effective. However, it can only be an assisting tool for drug design. </P><P> Conclusion: This paper introduces the application of machine learning approaches in anticancer drug design. Many examples of success in identification and prediction in the area of anticancer drugs activity prediction are discussed, and the anticancer drugs research is still in active progress. Moreover, the merits of some web servers related to anticancer drugs are mentioned.


2021 ◽  
pp. 1-17
Author(s):  
Ahmed Al-Tarawneh ◽  
Ja’afer Al-Saraireh

Twitter is one of the most popular platforms used to share and post ideas. Hackers and anonymous attackers use these platforms maliciously, and their behavior can be used to predict the risk of future attacks, by gathering and classifying hackers’ tweets using machine-learning techniques. Previous approaches for detecting infected tweets are based on human efforts or text analysis, thus they are limited to capturing the hidden text between tweet lines. The main aim of this research paper is to enhance the efficiency of hacker detection for the Twitter platform using the complex networks technique with adapted machine learning algorithms. This work presents a methodology that collects a list of users with their followers who are sharing their posts that have similar interests from a hackers’ community on Twitter. The list is built based on a set of suggested keywords that are the commonly used terms by hackers in their tweets. After that, a complex network is generated for all users to find relations among them in terms of network centrality, closeness, and betweenness. After extracting these values, a dataset of the most influential users in the hacker community is assembled. Subsequently, tweets belonging to users in the extracted dataset are gathered and classified into positive and negative classes. The output of this process is utilized with a machine learning process by applying different algorithms. This research build and investigate an accurate dataset containing real users who belong to a hackers’ community. Correctly, classified instances were measured for accuracy using the average values of K-nearest neighbor, Naive Bayes, Random Tree, and the support vector machine techniques, demonstrating about 90% and 88% accuracy for cross-validation and percentage split respectively. Consequently, the proposed network cyber Twitter model is able to detect hackers, and determine if tweets pose a risk to future institutions and individuals to provide early warning of possible attacks.


2021 ◽  
Vol 22 (S3) ◽  
Author(s):  
Jun Meng ◽  
Qiang Kang ◽  
Zheng Chang ◽  
Yushi Luan

Abstract Background Long noncoding RNAs (lncRNAs) play an important role in regulating biological activities and their prediction is significant for exploring biological processes. Long short-term memory (LSTM) and convolutional neural network (CNN) can automatically extract and learn the abstract information from the encoded RNA sequences to avoid complex feature engineering. An ensemble model learns the information from multiple perspectives and shows better performance than a single model. It is feasible and interesting that the RNA sequence is considered as sentence and image to train LSTM and CNN respectively, and then the trained models are hybridized to predict lncRNAs. Up to present, there are various predictors for lncRNAs, but few of them are proposed for plant. A reliable and powerful predictor for plant lncRNAs is necessary. Results To boost the performance of predicting lncRNAs, this paper proposes a hybrid deep learning model based on two encoding styles (PlncRNA-HDeep), which does not require prior knowledge and only uses RNA sequences to train the models for predicting plant lncRNAs. It not only learns the diversified information from RNA sequences encoded by p-nucleotide and one-hot encodings, but also takes advantages of lncRNA-LSTM proposed in our previous study and CNN. The parameters are adjusted and three hybrid strategies are tested to maximize its performance. Experiment results show that PlncRNA-HDeep is more effective than lncRNA-LSTM and CNN and obtains 97.9% sensitivity, 95.1% precision, 96.5% accuracy and 96.5% F1 score on Zea mays dataset which are better than those of several shallow machine learning methods (support vector machine, random forest, k-nearest neighbor, decision tree, naive Bayes and logistic regression) and some existing tools (CNCI, PLEK, CPC2, LncADeep and lncRNAnet). Conclusions PlncRNA-HDeep is feasible and obtains the credible predictive results. It may also provide valuable references for other related research.


2021 ◽  
Vol 13 (6) ◽  
pp. 3497
Author(s):  
Hassan Adamu ◽  
Syaheerah Lebai Lutfi ◽  
Nurul Hashimah Ahamed Hassain Malim ◽  
Rohail Hassan ◽  
Assunta Di Vaio ◽  
...  

Sustainable development plays a vital role in information and communication technology. In times of pandemics such as COVID-19, vulnerable people need help to survive. This help includes the distribution of relief packages and materials by the government with the primary objective of lessening the economic and psychological effects on the citizens affected by disasters such as the COVID-19 pandemic. However, there has not been an efficient way to monitor public funds’ accountability and transparency, especially in developing countries such as Nigeria. The understanding of public emotions by the government on distributed palliatives is important as it would indicate the reach and impact of the distribution exercise. Although several studies on English emotion classification have been conducted, these studies are not portable to a wider inclusive Nigerian case. This is because Informal Nigerian English (Pidgin), which Nigerians widely speak, has quite a different vocabulary from Standard English, thus limiting the applicability of the emotion classification of Standard English machine learning models. An Informal Nigerian English (Pidgin English) emotions dataset is constructed, pre-processed, and annotated. The dataset is then used to classify five emotion classes (anger, sadness, joy, fear, and disgust) on the COVID-19 palliatives and relief aid distribution in Nigeria using standard machine learning (ML) algorithms. Six ML algorithms are used in this study, and a comparative analysis of their performance is conducted. The algorithms are Multinomial Naïve Bayes (MNB), Support Vector Machine (SVM), Random Forest (RF), Logistics Regression (LR), K-Nearest Neighbor (KNN), and Decision Tree (DT). The conducted experiments reveal that Support Vector Machine outperforms the remaining classifiers with the highest accuracy of 88%. The “disgust” emotion class surpassed other emotion classes, i.e., sadness, joy, fear, and anger, with the highest number of counts from the classification conducted on the constructed dataset. Additionally, the conducted correlation analysis shows a significant relationship between the emotion classes of “Joy” and “Fear”, which implies that the public is excited about the palliatives’ distribution but afraid of inequality and transparency in the distribution process due to reasons such as corruption. Conclusively, the results from this experiment clearly show that the public emotions on COVID-19 support and relief aid packages’ distribution in Nigeria were not satisfactory, considering that the negative emotions from the public outnumbered the public happiness.


Author(s):  
Noman Ashraf ◽  
Abid Rafiq ◽  
Sabur Butt ◽  
Hafiz Muhammad Faisal Shehzad ◽  
Grigori Sidorov ◽  
...  

On YouTube, billions of videos are watched online and millions of short messages are posted each day. YouTube along with other social networking sites are used by individuals and extremist groups for spreading hatred among users. In this paper, we consider religion as the most targeted domain for spreading hate speech among people of different religions. We present a methodology for the detection of religion-based hate videos on YouTube. Messages posted on YouTube videos generally express the opinions of users’ related to that video. We provide a novel dataset for religious hate speech detection on Youtube comments. The proposed methodology applies data mining techniques on extracted comments from religious videos in order to filter religion-oriented messages and detect those videos which are used for spreading hate. The supervised learning algorithms: Support Vector Machine (SVM), Logistic Regression (LR), and k-Nearest Neighbor (k-NN) are used for baseline results.


Author(s):  
Sandy C. Lauguico ◽  
◽  
Ronnie S. Concepcion II ◽  
Jonnel D. Alejandrino ◽  
Rogelio Ruzcko Tobias ◽  
...  

The arising problem on food scarcity drives the innovation of urban farming. One of the methods in urban farming is the smart aquaponics. However, for a smart aquaponics to yield crops successfully, it needs intensive monitoring, control, and automation. An efficient way of implementing this is the utilization of vision systems and machine learning algorithms to optimize the capabilities of the farming technique. To realize this, a comparative analysis of three machine learning estimators: Logistic Regression (LR), K-Nearest Neighbor (KNN), and Linear Support Vector Machine (L-SVM) was conducted. This was done by modeling each algorithm from the machine vision-feature extracted images of lettuce which were raised in a smart aquaponics setup. Each of the model was optimized to increase cross and hold-out validations. The results showed that KNN having the tuned hyperparameters of n_neighbors=24, weights='distance', algorithm='auto', leaf_size = 10 was the most effective model for the given dataset, yielding a cross-validation mean accuracy of 87.06% and a classification accuracy of 91.67%.


Sign in / Sign up

Export Citation Format

Share Document