scholarly journals Design, Development, and Characterization of Amorphous Rosuvastatin Calcium Tablets

Author(s):  
Rocío González ◽  
Mª Ángeles Peña ◽  
Norma Sofía Torres ◽  
Guillermo Torrado

This work proposes a methodology for the design, development, optimisation, and evaluation of amorphous rosuvastatin calcium tablets (BCS class II drug). The main goal was to ensure rapid disintegration and high dissolution rate of the active ingredient, thus enhancing its bioavailability. The design started from a careful selection of excipients, which due to their characteristics and proportions within the formulation allowed the use of their properties such as fluidity or granulometric distribution. The formulation was characterised using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetry (TGA), Fourier transform infrared spectroscopy (FT-IR) and powder X-ray diffraction (PXRD) methods. The galenic SeDeM methodology was used to establish the profile of the active ingredient-excipient mixture and guarantee its suitability for producing tablets by the direct compression method. The results demonstrate that the amorphous rosuvastatin calcium tablets formulation developed made it possible to obtain cost-effective tablets by direct compression with optimal pharmacotechnical characteristics that showed a remarkable disintegration and dissolution rate. The manufactured tablets complied with the pharmacopoeia guidelines regarding uniformity of weight, tablet hardness, thickness, friability, in vitro disintegration time and dissolution profile.

2017 ◽  
Vol 9 (6) ◽  
pp. 39
Author(s):  
Zainab E. Jassim

Objective: The purpose of this study was to enhance the dissolution pattern of the practically water-insoluble diuretic drug, furosemide through its formulation into liquisolid tablets.Methods: A mathematical model was used to formulate four liquisolid powder systems using polyethylene glycol 400 as a non-volatile water miscible liquid vehicle. The liquid loading factors of the vehicle were used to calculate the optimum quantities of carrier (Avicel PH 102) and coating materials (Aerosil 200) needed to prepare acceptably flowing and compactible powder mixtures and (R) ratio used was 25. The liquisolid tablets were evaluated for weight variation, percent friability, hardness, content uniformity, disintegration time and in vitro drug release profile. Drug and the prepared systems were characterized by fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and powder x-ray diffraction (PXRD) studies.Results: The enhanced dissolution rate due to the increased wetting properties and the large available surface areas for dissolution were obtained in case of the liquisolid tablets. The selected optimal formulation (F2) of 50% drug concentration released 90% of its content during the first 10 min compared to 65% of DCT. FTIR studies revealed that there was no interaction between drug and polymers. DSC and PXRD indicated conversion of crystalline to amorphous form of furosemide. Conclusion: The dissolution rate of furosemide can be enhanced to a great extent by liquisolid technique.


2018 ◽  
Vol 4 (1) ◽  
pp. 86-102 ◽  
Author(s):  
A. Acharya ◽  
G.B.K. Kumar ◽  
P. Goudanavar ◽  
K. Dhakal

Background: Recent developments in fast dissolving tablets have brought convenience in dosing to pediatric and elderly patients who have trouble in swallowing tablets.The main objective of the present study is to formulate fast dissolving tablet of Lornoxicam by direct compression method.Methods: Guar gum and crospovidone were used as natural and synthetic superdisintegrants respectively. Fast dissolving tablet of Lornoxicam were prepared by direct compression technique using three different approaches; superdisintegrant addition, sublimation, and solid dispersion.Results: IR and DSC studies showed no interaction between the drug and the excipients. All formulation showed disintegration time ranging from 16.09-42.54 second. Wetting time and disintegration time decreased by increasing the super disintegrant concentration from 2.5% to 5% w/w. Formulae L16 gave the best in- vitro disintegration and dissolution results, which would be due to swelling effect of Gaur gum and amorphization of the drug during the solid dispersion preparation.The best formulation L16 was subjected to stability testing for 3 month and results showed no significant change in appearance, hardness, drug content and dissolution profile of the tablets, hence tablet is stable throughout its stability studies.Conclusion: It was concluded that fast dissolving tablets of Lornoxicam were formulated successfully with desired characteristics which disintegrated rapidly; provided rapid onset of action; and enhanced the patient convenience and compliance.JMMIHS,2018;4(1):86-102


2019 ◽  
Vol 11 (1) ◽  
pp. 150
Author(s):  
Sreenivas Patro Sisinthy ◽  
Shubbaneswarei Selladurai

Objective: The objective of this research was to formulate cinnarizine tablets using the liquid-solid compact technique to enhance its solubility and dissolution rate.Methods: Cinnarizine liquid-solid compacts were formulated using propylene glycol as the non-volatile solvent, Neusilin US2 as the carrier material, Aerosil 200 as the coating material and croscarmellose sodium as the disintegrant. The interaction between drug and excipients were characterized by Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) studies. Different batches of liquid, solid compacts were prepared by using varying carrier-coating excipient ratio and different concentration of liquid medication. Flow parameters such as bulk density, tapped density, Carr’s Index, Hausner’s Ratio as well as an angle of repose were used to test the flowability of the powder blend. The liquid-solid compacts were produced by direct compression method and were evaluated for tests such as weight variation, drug content, hardness, thickness, friability, wetting time, disintegration time as well as the in vitro dissolution studies.Results: The results of the preformulation studies of liquisolid compacts showed acceptable flow properties. The results of FTIR and DSC studies showed that there is no drug-excipient interactions. The different R values and concentrations were found to have a marked effect on the dissolution profile. Formulations with higher carrier: coating ratio (R-value) and lower drug concentrations displayed a better dissolution profile. The percentage of drug release of F3 with an R-value of 20 and a drug concentration of 10% was found to be 88.11% when compared to the conventional marketed tablet which released only 44.07% at the end of 2 h.Conclusion: From this research, it is inferred that liquid-solid technique is a promising and effective approach that can be used to enhance the dissolution rate of cinnarizine.


2021 ◽  
Vol 11 (6) ◽  
pp. 25-30
Author(s):  
Prashant L. Pingale

Rosuvastatin belongs to the statin medication class, which is used to treat excessive cholesterol and prevent heart disease. The Biopharmaceutical Classification System classifies it as class II. The goal of this project is to create 10 mg Rosuvastatin instant release pills using several types of materials. To boost the drug's bioavailability, superdisintegrants were used to speed up the disintegration and dissolution of Rosuvastatin calcium. Cited research work aims to formulate an immediate release tablet of Rosuvastatin for the treatment of hypercholesterolemia, hypolipoproteinemia, and atherosclerosis. The present work used a cost-effective wet granulation process to create an immediate release formulation of Rosuvastatin calcium. All of the batches were manufactured, and the granules were evaluated for pre-compression properties such as loss on drying, bulk density, tapped density, and compressibility index. Disintegration time and assay were determined to be within acceptable parameters, as were weight fluctuation, thickness, hardness, and friability of tablets. The effect of several superdisintegrants on in vitro dissolutions in 6.8 PH phosphate buffer was investigated. The final formulation was chosen based on the dissolving profile; dissolution studies revealed that formulations F2 and F4 released 80 percent of the medication within 15 minutes. Two different formulations of Rosuvastatin Calcium 5.199 and 10.398 mg employing immediate-release tablets were successfully generated using Crospovidone, Meglumine, and Comprecel 112D+®. The tablets showed complete drug release in 60 minutes and fair flow characteristics when compared to the innovators' product.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Sateesh Kumar Vemula ◽  
Mohan Vangala

The intention of present research is to formulate and develop the meclizine hydrochloride fast dissolving tablets using sublimation method to enhance the dissolution rate. In this study an attempt was made to fasten the drug release from the oral tablets by incorporating the superdisintegrants and camphor as sublimating agent. The prepared fast dissolving tablets were subjected to precompression properties and characterized for hardness, weight variation, friability, wetting time, water absorption ratio, and disintegration time. From in vitro release studies, the formulation F9 exhibited fast release profile of about 98.61% in 30 min, and disintegration time 47 sec when compared with other formulations. The percent drug release in 30 min (Q30) and initial dissolution rate for formulation F9 was 98.61 ± 0.25%, 3.29%/min. These were very much higher compared to marketed tablets (65.43 ± 0.57%, 2.18%/min). The dissolution efficiency was found to be 63.37 and it is increased by 1.4-fold with F9 FDT tablets compared to marketed tablets. Differential scanning calorimetry and Fourier transform infrared spectroscopy studies revealed that there was no possibility of interactions. Thus the development of meclizine hydrochloride fast dissolving tablets by sublimation method is a suitable approach to improve the dissolution rate.


2018 ◽  
Vol 10 (1) ◽  
pp. 145
Author(s):  
Nawal Ayash Rajab

Objective: The aim of the present study was to prepare a new liquid-solid tablet to enhance the dissolution and bioavailability of a poor water soluble calcium channel blocker lacidipine.Methods: Firstly, solubility study of lacidipine in different media of water-miscible non-volatile solvents as tween 20, tween 80, propylene glycol, liquid paraffin, PEG200, PEG400, and PEG600 was investigated to select the most suitable solvent. A mathematical model was applied to calculate the appropriate amount of carrier and coating material.Four liquid-solid tablets of 6 mg lacidipine were prepared by dissolving the drug in the previously chosen water miscible non-volatile solvents, then a binary mixture of the carrier (Avicel PH 102) and coating material (Aerosil 200) at a ratio of 45:1 was used in all preparation since it gave the optimal flow property. Croscarmellose and magnesium stearate were incorporated in all prepared formulas as super disintegrant and lubricant respectively. On the other hand, directly compressed lacidipine tablet of the same previous composition without the addition of any non-volatile solvent was prepared for comparism study. Both characterizations of powder mixture and post-compression tablet evaluations were done. Differential scanning calorimetry (DSC) and fourier transform infrared spectroscopy (FTIR) were investigated for the pure drug, physical mixture, and selected liquid-solid tablet to exclude any drug-excipients interaction.Results: The obtained results indicated that PEG 200 was the most suitable solvent with lacidipine solubility of 2.81 mg/ml. Flowability of all the prepared formulas was found to be within the specification limits. The liquid-solid tablet formula with PEG 200 at 10% w/w lacidipine was the most suitable one in the term of disintegration time (21±0.2 second), 100% of drug release within 10 min, and with accepted other tablet properties.DSC thermograms for both physical mixture of selected liquisolid system and its tablets illustrated the formation of lacidipine amorphous solid solution. The absence of chemical interaction between drug and other formula components was confirmed by remaining all characteristic peaks of lacidipine in all investigated FTIR spectra.Conclusion: Liquid-solid tablet was considered as a promising system to enhance solubility and dissolution rate of poor-water soluble lacidipine. 


Author(s):  
Nikita Sehgal ◽  
Vishal Gupta N ◽  
Gowda Dv ◽  
Sivadasu P

 Objective: The aim of the present study was to increase the dissolution rate of glibenclamide (GLIB) by molecular dispersion of drug in the polymeric matrix of Pluronic F-127.Methods: GLIB-loaded solid dispersions were formulated by fusion method. The formulated solid dispersions were characterized for scanning electron microscopy (SEM), X-ray diffractometry (XRD), differential scanning calorimetry (DSC), and evaluated for percentage yield, drug content, solubility, and in vitro dissolution profile, and stability studies were conducted as per International Conference on Harmonisation guidelines Q1A in stability chamber, both at intermediate and accelerated conditions.Results: Both XRD and DSC studies suggested that crystalline GLIB was converted to amorphous form after loading into carrier. SEM studies revealed that the prepared solid dispersions were in the form of irregular particles with the absence of crystalline material. Due to this conversion of crystalline to amorphous state, formulated solid dispersions had shown improved dissolution rate profile of GLIB and stability studies suggested that formulated solid dispersions showed no significant changes in appearance and also in drug content.Conclusion: Thus, from the obtained results, it can be concluded that dissolution profile of GLIB can be improved by formulating as solid dispersion.


2018 ◽  
Vol 68 (3) ◽  
pp. 325-336 ◽  
Author(s):  
Mir-Ali Molaei ◽  
Karim Osouli-Bostanabad ◽  
Khosro Adibkia ◽  
Javad Shokri ◽  
Solmaz Asnaashari ◽  
...  

Abstract The study was conducted to enhance the dissolution rate of ketoconazole (KCZ) (a poorly water-soluble drug) using the liquisolid technique. Microcrystalline cellulose, colloidal silica, PEG400 and polyvinyl pyrrolidone (PVP) were employed as a carrier, coating substance, nonvolatile solvent and additive in the KCZ liquisolid compact formulation, respectively. The drug-to-PEG400 and carrier-to-coating ratio variations, PVP concentration and aging effects on the in vitro release behavior were assessed. Differential scanning calorimetry (DSC) and X-ray powder diffraction (XRD) data revealed no alterations in the crystalline form of the drug and the KCZ-excipient interactions within the process. The load factor and the drug release rate were significantly enhanced compared to directly compressed tablets in the presence of the additive. Increasing the PEG400-to-drug ratio in liquid medications enhanced the dissolution rate remarkably. The dissolution profile and hardness of liquisolid compacts were not significantly altered by keeping the tablets at 40 °C and relative humidity of 75 % for 6 months. With the proposed modification of the liquisolid process, it is possible to obtain flowable, compactible liquisolid powders of high-dose poorly-water soluble drugs with an enhanced dissolution rate.


Author(s):  
M. Mohan Varma ◽  
Razia Begum S K

Carbamazepine is a water-insoluble antiepileptic drug. Being a BCS class-II drug, its absorption is dissolution rate limited. Solid dispersions were prepared to enhance the dissolution rate of the drug. Crospovidone and croscarmellose sodium were used as the hydrophilic carriers. Solid dispersions showed a remarkable enhancement in the dissolution rate of the drug. In the present research work, the solid dispersions were formulated in to fast dissolving tablets. The prepared tablets were evaluated for hardness, friability, drug content, disintegration time and the in vitro dissolution rate. The solid dispersions were characterized by Fourier Transform Infrared Spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA). The DSC study revealed a marked reduction in the crystallinity of the drug. The faster dissolution rate of the solid dispersion is attributed to a marked reduction in the crystallinity of the drug. The FTIR and DSC studies demonstrated the absence of drug-polymer interaction. The formulated tablet (F2) achieved a 7 fold faster dissolution rate compared to the marketed tablet.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Braham Dutt ◽  
Manjusha Choudhary ◽  
Vikas Budhwar

Abstract Background Cocrystallization process involved the understanding of interaction at molecular level between two molecules in context to their crystal packing and designing of new solids having improved physicochemical as well as pharmaceutical properties. In the present research, an attempt to increase the aqueous solubility and dissolution rate of a poorly aqueous soluble drug fenofibrate (FB) by formulation and evaluation of its cocrystals with benzoic acid (BZ) as a coformer was carried out. Results The drug and coformer were cocrystallized by using the solvent drop grinding method. For prediction of cocrystals formation, CSD (Cambridge Structure Database) software was utilized. Fourier transformation infrared spectroscopy (FTIR), X-ray diffraction (XRD) and differential scanning calorimetry (DSC) techniques were used for analysis of cocrystals. Albino rats were procured from institution as per IAEC guidelines for in vivo anti-hyperlipidaemic studies. The in vitro dissolution profile of cocrystals, pure drug, their physical mixture and marketed formulation was found to be 89%, 39%, 47% and 61%, respectively. Conclusions An enhanced anti-hyperlipidaemic activity of cocrystals was found compared to pure drug. The FB: BZ cocrystals also compared to the pure drug showed better dissolution profile and improved in vivo anti-hyperlipidaemic activity in rats. The study proved that cocrystals can promise to improve in vitro dissolution rate of poorly aqueous soluble drugs, which in turn can lead to better in vivo activities.


Sign in / Sign up

Export Citation Format

Share Document