scholarly journals Preparation, characterization and evaluation of fenofibrate: benzoic acid cocrystals with enhanced pharmaceutical properties

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Braham Dutt ◽  
Manjusha Choudhary ◽  
Vikas Budhwar

Abstract Background Cocrystallization process involved the understanding of interaction at molecular level between two molecules in context to their crystal packing and designing of new solids having improved physicochemical as well as pharmaceutical properties. In the present research, an attempt to increase the aqueous solubility and dissolution rate of a poorly aqueous soluble drug fenofibrate (FB) by formulation and evaluation of its cocrystals with benzoic acid (BZ) as a coformer was carried out. Results The drug and coformer were cocrystallized by using the solvent drop grinding method. For prediction of cocrystals formation, CSD (Cambridge Structure Database) software was utilized. Fourier transformation infrared spectroscopy (FTIR), X-ray diffraction (XRD) and differential scanning calorimetry (DSC) techniques were used for analysis of cocrystals. Albino rats were procured from institution as per IAEC guidelines for in vivo anti-hyperlipidaemic studies. The in vitro dissolution profile of cocrystals, pure drug, their physical mixture and marketed formulation was found to be 89%, 39%, 47% and 61%, respectively. Conclusions An enhanced anti-hyperlipidaemic activity of cocrystals was found compared to pure drug. The FB: BZ cocrystals also compared to the pure drug showed better dissolution profile and improved in vivo anti-hyperlipidaemic activity in rats. The study proved that cocrystals can promise to improve in vitro dissolution rate of poorly aqueous soluble drugs, which in turn can lead to better in vivo activities.

Author(s):  
Moon Rajkumar ◽  
Gattani Surendra

 Objective: The objective of this study was to increase the solubility and dissolution rate of paliperidone (PAL) by preparing its nanocrystals using different hydrophilic carriers by antisolvent precipitation technique.Methods: The nanoparticles (NP) were characterized for aqueous solubility, drug content, Fourier transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, particle size, and in vitro-in vivo analysis.Results: The results showed improved solubility and dissolution rate of NPs when compared to pure drug and physical mixture (PM). Solubility data showed a linear graph giving an indication that there is a gradual increase in the solubility profile of the drug with an increase in concentration of the carriers. At highest concentration, the solubility of NPs with Plasdone S630, Povidone K-25, and PVP K-30 found to be increased by 12 folds, 9 folds and 6 folds, respectively, as compared to pure drug. The release profile of NPs with Plasdone S630 in terms of dissolution efficiency at 60 min (DE60), initial dissolution rate (IDR), amount release in 15 min (Q15 min), and time for 75% release (t75%) shows better results when compared to pure drug, PM, and also NPs with povidone 25 and povidone 30. In vivo study reveals that optimized NPs elicited significant induction of cataleptic behavior which is the indication of antipsychotic agent(s) effect.Conclusion: The process antisolvent precipitation under constant stirring may be a promising method to produce stable PAL NPs with markedly enhanced solubility and dissolution rate due to nanonization with the increased surface area, improved wettability, and reduced diffusion pathway.


2012 ◽  
Vol 48 (4) ◽  
pp. 667-676 ◽  
Author(s):  
Damineni Saritha ◽  
Penjuri Subhash Chandra Bose ◽  
Poreddy Srikanth Reddy ◽  
Grandhi Madhuri ◽  
Ravouru Nagaraju

Naproxen, an anti-inflammatory drug, exhibits poor aqueous solubility, which limits the pharmacological effects. The present work was carried out to study the effect of agglomeration on micromeritic properties and dissolution. Naproxen agglomerates were prepared by using a three solvents system composed of acetone (good solvent), water (non-solvent) and dichloromethane (bridging liquid). Differential Scanning Calorimetry (DSC) results showed no change in the drug after crystallization process. X-Ray Powder Diffraction (XRPD) studies showed the sharp peaks are present in the diffractograms of spherical agglomerates with minor reduction in height of the peaks. The residual solvents are largely below the tolerated limits in the agglomerates. Scanning Electronic Microscopy (SEM) studies showed that agglomerates were spherical in structure and formed by cluster of small crystals. The agglomerates exhibited improved solubility, dissolution rate and micromeritic properties compared to pure drug. Anti-inflammatory studies were conducted in Wistar strain male albino rats and naproxen agglomerates showed more significant activity than the pure drug.


2021 ◽  
Author(s):  
Anil Raosaheb Pawar ◽  
Nikhil Arun Shete ◽  
Priyanka Vitthal Jadhav ◽  
Vinayak Kashinath Deshmukh ◽  
Jaswandi Sameer Mehetre

Microsponge, a novel drug delivery system, is designed to deliver a pharmaceutically active ingredient efficiently at the minimum dose. Microsponge plays an important role in enhancing drug stability, reducing side effects, and modifying drug release profiles. It is mostly used for transdermal delivery. Recent studies also explored their use for oral administration. This study aimed to explore the potential use of the microsponge technique in improving the aqueous solubility and dissolution profile of pentoxifylline (PTX). In this study, microsponges were prepared by a quasi-emulsion solvent diffusion method by varying concentrations of carriers. Nine different ratios of the PTX:Eudragit E-100 with varying amounts of dichloromethane were used. All formulated microsponges were evaluated for %production yield, compatibility of drug excipient, encapsulation efficiency, in vitro drug release, and in vivo bioavailability, as well as recorded by scanning electron microscopy (SEM) and differential scanning calorimetry(DSC). Our data suggested that the aqueous solubility of PTX microsponges was four times greater than that of pure drug. The in vitro drug release of selected microsponges (M8) was found to be 70%; furthermore, the in vivo study suggested that the selected formulation significantly enhanced drug concentration in the plasma (9,219 ng/mL in 12 hours) in comparison to pure drug PTX (2,476 ng/mL in 12 hours). SEM showed that the prepared microsponges were spherical with porous nature. Fourier-transform infrared spectroscopy and DSC studies confirmed an absence of incompatibility among drugs and selected excipients. The pH of the selected gel was found to be 6.8, which was compatible with those of skin and oral formulations also. All above data suggested a highly successful and beneficial use of the microsponge technique in enhancing aqueous solubility, dissolution profile, and oral bioavailability of PTX. Microsponge-based delivery of PTX may represent an alternative strategy to improve the bioavailability of the drug.


Author(s):  
Pravin S Patil ◽  
Shashikant C Dhawale

 Objective: The purpose of the present investigation was to develop a nanosuspension to improve dissolution rate and oral bioavailability of ritonavir.Methods: Extended-release ritonavir loaded nanoparticles were prepared using the polymeric system by nanoprecipitation technique. Further, the effect of Eudragit RL100 (polymeric matrix) and polyvinyl alcohol (surfactant) was investigated on particle size and distribution, drug content, entrapment efficiency, and in vitro drug release from nanosuspension where a strong influence of polymeric contents was observed. Drug-excipient compatibility and amorphous nature of drug in prepared nanoparticles were confirmed by Fourier transform infrared spectroscopy, differential scanning calorimetry, and powder X-ray diffraction studies, respectively.Results: Hydrophobic portions of Eudragit RL100 could result in enhanced encapsulation efficiency. However, increase in polymer and surfactant contents lead to enlarged particle size proportionately as confirmed by transmission electron microscopy. Nanosuspension showed a significant rise in dissolution rate with complete in vitro drug release as well as higher bioavailability in rats compared to the pure drug.Conclusion: The nanoprecipitation technique used in present research could be further explored for the development of different antiretroviral drug carrier therapeutics.


Author(s):  
Adel M Aly ◽  
Khaled M. Al-Akhali ◽  
Hesham Alrefaey ◽  
Mahmoud A. Shaker

Gliclazide (GZ) is practically insoluble in water and its bioavailability is limited by dissolution rate. The aim of the present study was to enhance the dissolution rate and bioavailability of GZ by complexation with hydroxypropyl (HP)-β-cyclodextrin (CD) applying three different methods; physical mixing, kneading technique and spray drying technique.  Also, to evaluate the dissolution rate and the hypoglycemic effect of the prepared complexes, in comparison with the GZ market product (Glizide tablets) in Saudi market. The produced complexes were characterized and evaluated using Differential Scanning Calorimetry (DSC), X-ray Diffractometry (XRD), Scanning Electron Microscope (SEM) and the in vitro release studies. All the methods of preparation of complexes were found to be effective in improving the solubility of gliclazide in comparison with the commercial product (Glizide tablets). The formation of inclusion complexes was evident in these formulations as shown by DSC and XRD studies. The inclusion complexes prepared by spray drying method in 1:1 molar ratios were the most effective method for improving the solubility of GZ. The in-vivo hypoglycemic effect of the complexed GZ-HP-β-CD prepared by spray drying significantly improved the biological performance and therapeutic efficacy of the drug compared to Glizide market product.  


INDIAN DRUGS ◽  
2014 ◽  
Vol 51 (02) ◽  
pp. 29-38
Author(s):  
R. K Devara ◽  
◽  
P. Reddipogu ◽  
S Kumar ◽  
B. Rambabu ◽  
...  

The objective of this study was to investigate nanosuspensions, hydroxypropyl-β-cyclodextrin (HPβCD) complexes and SLS powders for enhancing the solubility and dissolution rate of Prasugrel HCl (PHCl) so as to reduce the fluctuations in its oral bioavailability. PHCl nanosuspensions were prepared using evaporative precipitation method. HPβCD inclusion complexes of PHCl were prepared using physical mixture, co-evaporation and kneading methods. Powders of the pure drug with different SLS amounts were prepared. The formulations were characterized using techniques such as powder x-ray diffractometry, scanning electron microscopy, in vitro dissolution and in vivo absorption in rats. To further aid in the betterment of development of nevirapine nanosuspension, in vitro in vivo correlation (IVIVC) was established using deconvolution technique. Nanosuspensions and HPβCD inclusion complexes of PHCl were successfully prepared. The dissolution rate and oral absorption of PHCl in the form of nanosuspensions was significantly higher than that of HPβCD complexes, SLS powders as well as pure drug. All the techniques investigated in this study can be used to enhance dissolution rate and oral absorption of prasugrel HCl and thus can reduce the fluctuations in its oral bioavailability. Nanosuspensions demonstrated to be better and superior technique when compared to other techniques investigated in enhancing oral bioavailability of PHCl. IVIVC that could aid in further formulation development of PHCl nanosuspension was successfully developed using a deconvolution approach.


Author(s):  
Shubhangi Aher ◽  
Ravindra Pal Singh ◽  
Manish Kumar

The problem of bacterial conjunctivitis has dramatically increased in recent years due increased pollution and modern lifestyle. The present study was focused to fabricate Sparfloxacin loaded nanostructured lipid carriers (Spar-NLCs) for ophthalmic application to improve ocular penetration of drug and give sustained release of drug to reduce dosing frequency and toxic effect of drug associated with ocular membrane. A regular two-level factorial design was used to optimize the formulation parameters that are significantly affecting the formulation attributes. Spar-NLCs with particle size 171.1 ± 11 nm, zeta potential -49 ± 6.47 mV, entrapment efficiency 89.5 ± 5% and spherical in shape was obtained. Besides this, FTIR spectroscopy, differential scanning calorimetry, and transmission electron microscopy results suggest that the drug is successfully incorporated in NLC and has excellent compatibility with the excipients. In vitro release study follows Korsmeyer peppas model and suggests that 81.35 ± 6.2% release of drug from Spar-NLCs in 12 hours. The result of ex-vivo permeation study demonstrated 349.75 ± 7.3 µg/cm2 of permeation of drug, 44.482 µg cm-2 hr -1 of flux, and 0.1482 cm hr-1 of permeability coefficient which is 1.7 folds higher than pure drug suspension. The antimicrobial activity of Spar-NLCs was better than the pure drug suspension and equivalent to the marketed formulation. Spar-NLC formulation did not showed any ocular damage, swelling, and redness in in -vivo Draize test. The ocular tolerance test (HET-CAM test) also suggests that the Spar-NLC formulation and its excipients were nonirritant to the ocular tissues. The formulation was found to be stable over the three month of stability study. Therefore, this work strongly suggest that Spar-NLCs has higher penetration and extended release of drug which can be effectively used in prevention of bacterial conjunctivitis.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 693
Author(s):  
Muhammad Zaman ◽  
Sadaf Saeed ◽  
Rabia Imtiaz Bajwa ◽  
Muhammad Shafeeq Ur Rahman ◽  
Saeed Ur Rahman ◽  
...  

The current study was designed to convert the poloxamer (PLX) into thiolated poloxamer (TPLX), followed by its physicochemical, biocompatibilities studies, and applications as a pharmaceutical excipient in the development of tacrolimus (TCM)-containing compressed tablets. Thiolation was accomplished by using thiourea as a thiol donor and hydrochloric acid (HCl) as a catalyst in the reaction. Both PLX and TPLX were evaluated for surface morphology based on SEM, the crystalline or amorphous nature of the particles, thiol contents, micromeritics, FTIR, and biocompatibility studies in albino rats. Furthermore, the polymers were used in the development of compressed tablets. Later, they were also characterized for thickness, diameter, hardness, weight variation, swelling index, disintegration time, mucoadhesion, and in vitro drug release. The outcomes of the study showed that the thiolation process was accomplished successfully, which was confirmed by FTIR, where a characteristic peak was noticed at 2695.9968 cm−1 in the FTIR scan of TPLX. Furthermore, the considerable concentration of the thiol constituents (20.625 µg/g of the polymer), which was present on the polymeric backbone, also strengthened the claim of successful thiolation. A mucoadhesion test illustrated the comparatively better mucoadhesion strength of TPLX compared to PLX. The in vitro drug release study exhibited that the TPLX-based formulation showed a more rapid (p < 0.05) release of the drug in 1 h compared to the PLX-based formulation. The in vivo toxicity studies confirmed that both PLX and TPLX were safe when they were administered to the albino rats. Conclusively, the thiolation of PLX made not only the polymer more mucoadhesive but also capable of improving the dissolution profile of TCM.


Author(s):  
Rocío González ◽  
Mª Ángeles Peña ◽  
Norma Sofía Torres ◽  
Guillermo Torrado

This work proposes a methodology for the design, development, optimisation, and evaluation of amorphous rosuvastatin calcium tablets (BCS class II drug). The main goal was to ensure rapid disintegration and high dissolution rate of the active ingredient, thus enhancing its bioavailability. The design started from a careful selection of excipients, which due to their characteristics and proportions within the formulation allowed the use of their properties such as fluidity or granulometric distribution. The formulation was characterised using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetry (TGA), Fourier transform infrared spectroscopy (FT-IR) and powder X-ray diffraction (PXRD) methods. The galenic SeDeM methodology was used to establish the profile of the active ingredient-excipient mixture and guarantee its suitability for producing tablets by the direct compression method. The results demonstrate that the amorphous rosuvastatin calcium tablets formulation developed made it possible to obtain cost-effective tablets by direct compression with optimal pharmacotechnical characteristics that showed a remarkable disintegration and dissolution rate. The manufactured tablets complied with the pharmacopoeia guidelines regarding uniformity of weight, tablet hardness, thickness, friability, in vitro disintegration time and dissolution profile.


Author(s):  
Nikita Sehgal ◽  
Vishal Gupta N ◽  
Gowda Dv ◽  
Sivadasu P

 Objective: The aim of the present study was to increase the dissolution rate of glibenclamide (GLIB) by molecular dispersion of drug in the polymeric matrix of Pluronic F-127.Methods: GLIB-loaded solid dispersions were formulated by fusion method. The formulated solid dispersions were characterized for scanning electron microscopy (SEM), X-ray diffractometry (XRD), differential scanning calorimetry (DSC), and evaluated for percentage yield, drug content, solubility, and in vitro dissolution profile, and stability studies were conducted as per International Conference on Harmonisation guidelines Q1A in stability chamber, both at intermediate and accelerated conditions.Results: Both XRD and DSC studies suggested that crystalline GLIB was converted to amorphous form after loading into carrier. SEM studies revealed that the prepared solid dispersions were in the form of irregular particles with the absence of crystalline material. Due to this conversion of crystalline to amorphous state, formulated solid dispersions had shown improved dissolution rate profile of GLIB and stability studies suggested that formulated solid dispersions showed no significant changes in appearance and also in drug content.Conclusion: Thus, from the obtained results, it can be concluded that dissolution profile of GLIB can be improved by formulating as solid dispersion.


Sign in / Sign up

Export Citation Format

Share Document