Formulation, Physicochemical Evaluation, and Dissolution Studies of Carbamazepine Solid Dispersions

Author(s):  
M. Mohan Varma ◽  
Razia Begum S K

Carbamazepine is a water-insoluble antiepileptic drug. Being a BCS class-II drug, its absorption is dissolution rate limited. Solid dispersions were prepared to enhance the dissolution rate of the drug. Crospovidone and croscarmellose sodium were used as the hydrophilic carriers. Solid dispersions showed a remarkable enhancement in the dissolution rate of the drug. In the present research work, the solid dispersions were formulated in to fast dissolving tablets. The prepared tablets were evaluated for hardness, friability, drug content, disintegration time and the in vitro dissolution rate. The solid dispersions were characterized by Fourier Transform Infrared Spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA). The DSC study revealed a marked reduction in the crystallinity of the drug. The faster dissolution rate of the solid dispersion is attributed to a marked reduction in the crystallinity of the drug. The FTIR and DSC studies demonstrated the absence of drug-polymer interaction. The formulated tablet (F2) achieved a 7 fold faster dissolution rate compared to the marketed tablet.

INDIAN DRUGS ◽  
2016 ◽  
Vol 53 (01) ◽  
pp. 54-59
Author(s):  
S. S Shelake ◽  
◽  
R. G Gaikwad ◽  
S Patil ◽  
F. I. Mevekari ◽  
...  

Crystalline state compounds are typically dissolution rate limited and dissolution rate is directly proportional to the solubility for BCS class II or class IV compounds. Solid dispersions are one of the most promising strategies to improve the oral bioavailability poorly water soluble drugs. The purpose of this study was to increase solubility of carvedilol by solid dispersion (SDs) technique with Poloxamer (PXM) 407 in aqueous media. The carvedilol- PXM 407 solid dispersion was prepared by solvent evaporation, kneading and melting method. It was characterized by differential scanning calorimetry (DSC), X-ray powder diffraction (XRD), Fourier transformation infra-red spectroscopy (FT-IR), scanning electron microscopy (SEM) and in vitro dissolution studies. The prepared solid dispersion were found to have higher dissolution rates as compared to intact carvedilol. During formulation of solid dispersion crystalline to amorphous transition has been observed.


Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 939
Author(s):  
Noor Ul Islam ◽  
Ezzat Khan ◽  
Muhammad Naveed Umar ◽  
Attaullah Shah ◽  
Muhammad Zahoor ◽  
...  

Cocrystallization is a promising approach to alter physicochemical properties of active pharmaceutical ingredients (hereafter abbreviated as APIs) bearing poor profile. Nowadays pharmaceutical industries are focused on preparing drug-drug cocrystals of APIs that are often prescribed in combination therapies by physicians. Physicians normally prescribe antibiotic with an analgesic/antipyretic drug to combat several ailments in a better and more efficient way. In this work, azithromycin (AZT) and paracetamol (PCM) cocrystals were prepared in 1:1 molar ratio using slow solvent evaporation method. The cocrystals were characterized by Fourier transform infrared (FTIR), Raman spectroscopy, powder X-ray diffraction (PXRD), differential scanning calorimeter (DSC), thermo gravimetric analysis (TGA) and high-performance liquid chromatography (HPLC). Vibrational spectroscopy and DSC confirmed that both APIs interact physically and showed chemical compatibility, while PXRD pattern of the starting material and products revealed that cocrystal have in a unique crystalline phase. The degree of hydration was confirmed by TGA analysis and result indicates monohydrate cocrystal formation. The HPLC analysis confirmed equimolar ratio of AZT:PCM in the cocrystal. The in vitro dissolution rate, saturation solubility, and antimicrobial activity were evaluated for AZT dihydrate and the resulting cocrystals. The cocrystals exhibited better dissolution rate, solubility and enhanced biological activities.


Author(s):  
Nikita Sehgal ◽  
Vishal Gupta N ◽  
Gowda Dv ◽  
Sivadasu P

 Objective: The aim of the present study was to increase the dissolution rate of glibenclamide (GLIB) by molecular dispersion of drug in the polymeric matrix of Pluronic F-127.Methods: GLIB-loaded solid dispersions were formulated by fusion method. The formulated solid dispersions were characterized for scanning electron microscopy (SEM), X-ray diffractometry (XRD), differential scanning calorimetry (DSC), and evaluated for percentage yield, drug content, solubility, and in vitro dissolution profile, and stability studies were conducted as per International Conference on Harmonisation guidelines Q1A in stability chamber, both at intermediate and accelerated conditions.Results: Both XRD and DSC studies suggested that crystalline GLIB was converted to amorphous form after loading into carrier. SEM studies revealed that the prepared solid dispersions were in the form of irregular particles with the absence of crystalline material. Due to this conversion of crystalline to amorphous state, formulated solid dispersions had shown improved dissolution rate profile of GLIB and stability studies suggested that formulated solid dispersions showed no significant changes in appearance and also in drug content.Conclusion: Thus, from the obtained results, it can be concluded that dissolution profile of GLIB can be improved by formulating as solid dispersion.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 533 ◽  
Author(s):  
Ana Borrego-Sánchez ◽  
Rita Sánchez-Espejo ◽  
Beatrice Albertini ◽  
Nadia Passerini ◽  
Pilar Cerezo ◽  
...  

Calcium carbonate is an abundant mineral with several advantages to be a successful carrier to improve oral bioavailability of poorly water-soluble drugs, such as praziquantel. Praziquantel is an antiparasitic drug classified in group II of the Biopharmaceutical Classification System hence characterized by high-permeability and low-solubility. Therefore, the dissolution rate is the limiting factor for the gastrointestinal absorption that contributes to the low bioavailability. Consequently, the therapeutic dose of the praziquantel must be high and big tablets and capsules are required, which are difficult to swallow, especially for pediatric and elderly patients. Mixtures of praziquantel and calcium carbonate using solid-solid physical mixtures and solid dispersions were prepared and characterized using several techniques (X-ray diffraction differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy, laser diffraction, Fourier transform infrared and Raman spectroscopies). Solubility of these formulations evidenced that the solubility of praziquantel-calcium carbonate interaction product increased in physiological media. In vitro dissolution tests showed that the interaction product increased the dissolution rate of the drug in acidic medium. Theoretical models were studied to understand this experimental behavior. Cytotoxicity and cell cycle studies were performed, showing that praziquantel-calcium carbonate physical mixture and interaction product were biocompatible with the HTC116 cells, because it did not produce a decrease in cell viability or alterations in the cell cycle.


Author(s):  
Narendar D ◽  
Ettireddy S

The content of this investigation was to study the influence of β-cyclodextrin and hydroxy propyl-β-cyclodextrin complexation on enhancement of solubility and dissolution rate of isradipine. Based on preliminary phase solubility studies, solid complexes prepared by freeze drying method in 1:1 molar ratio were selected and characterized by DSC for confirmation of complex formation. Prepared solid dispersions were evaluated for drug content, solubility and in vitro dissolution. The physical stability of optimized formulation was studied at refrigerated and room temperature for 2 months. Solid state characterization of optimized complex performed by DSC and XRD studies.  Dissolution rate of isradipine was increased compared with pure drug and more with HP-β-CD inclusion complex than β-CD. DSC and XRD analyzes that drug was in amorphous form, when the drug was incorporated as isradipine β-CD and HP-β-CD inclusion complex. Stability studies resulted in low or no variations in the percentage of complexation efficiency suggesting good stability of molecular complexes. The results conclusively demonstrated that the enhancement of solubility and dissolution rate of isradipine by drug-cyclodextrin complexation was achieved.   


Author(s):  
R. SANTOSH KUMAR ◽  
ANNU KUMARI ◽  
B. KUSUMA LATHA ◽  
PRUDHVI RAJ

Objective: The aim of the current research is optimization, preparation and evaluation of starch tartrate (novel super disintegrant) and preparation of fast dissolving oral films of cetirizine dihydrochloride by employing starch tartrate. Methods: To check the drug excipient compatibility studies of the selected drug (Cetrizine dihydrochloride) and the prepared excipient i. e starch tartrate, different studies like FTIR (Fourier-transform infrared spectroscopy), DSC (Differential scanning calorimetry) and thin-layer chromatography (TLC) were carried out to find out whether there is any interaction between cetirizine dihydrochloride and starch tartrate. The solvent casting method was used for the preparation of fast dissolving films. The prepared films were then evaluated for thickness, folding endurance, content uniformity, tensile strength, percent elongation, in vitro disintegration time and in-vitro dissolution studies. Response surface plots and contour plots were also plotted to know the individual and combined effect of starch tartrate (A), croscarmellose sodium (B) and crospovidone (C) on disintegration time and drug dissolution efficiency in 10 min (dependent variables). Results: Films of all the formulations are of good quality, smooth and elegant by appearance. Drug content (100±5%), thickness (0.059 mm to 0.061 mm), the weight of films varies from 51.33 to 58.06 mg, folding endurance (52 to 67 times), tensile strength (10.25 to 12.08 N/mm2). Fast dissolving films were found to disintegrate between 34 to 69 sec. Percent dissolved in 5 min were found to be more in F1 formulation which confirms that starch tartrate was effective at 1%. Conclusion: From the research conducted, it was proved that starch tartrate can be used in the formulation of fast dissolving films of cetirizine dihydrochloride. The disintegration time of the films was increased with increase in concentration of super disintegrant.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2230
Author(s):  
Nontsikelelo Noxolo Tafu ◽  
Victoria A. Jideani

Moringa oleifera leaf powder (MOLP) has been identified as the most important functional ingredient owing to its rich nutritional profile and healthy effects. The solubility and functional properties of this ingredient can be enhanced through solid dispersion technology. This study aimed to investigate the effects of polyethylene glycols (PEGs) 4000 and 6000 as hydrophilic carriers and solid dispersion techniques (freeze-drying, melting, solvent evaporation, and microwave irradiation) on the crystallinity and thermal stability of solid-dispersed Moringa oleifera leaf powders (SDMOLPs). SDMOLPs were dully characterized using powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), thermo-gravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FTIR). The PXRD results revealed that the solid dispersions were partially amorphous with strong diffraction peaks at 2θ values of 19° and 23°. The calorimetric and thermogravimetric curves showed that PEGs conferred greater stability on the dispersions. The FTIR studyrevealed the existence of strong intermolecular hydrogen bond interactions between MOLP and PEG functional groups. MOLP solid dispersions may be useful in functional foods and beverages and nutraceutical formulations.


2017 ◽  
Vol 9 (6) ◽  
pp. 39
Author(s):  
Zainab E. Jassim

Objective: The purpose of this study was to enhance the dissolution pattern of the practically water-insoluble diuretic drug, furosemide through its formulation into liquisolid tablets.Methods: A mathematical model was used to formulate four liquisolid powder systems using polyethylene glycol 400 as a non-volatile water miscible liquid vehicle. The liquid loading factors of the vehicle were used to calculate the optimum quantities of carrier (Avicel PH 102) and coating materials (Aerosil 200) needed to prepare acceptably flowing and compactible powder mixtures and (R) ratio used was 25. The liquisolid tablets were evaluated for weight variation, percent friability, hardness, content uniformity, disintegration time and in vitro drug release profile. Drug and the prepared systems were characterized by fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and powder x-ray diffraction (PXRD) studies.Results: The enhanced dissolution rate due to the increased wetting properties and the large available surface areas for dissolution were obtained in case of the liquisolid tablets. The selected optimal formulation (F2) of 50% drug concentration released 90% of its content during the first 10 min compared to 65% of DCT. FTIR studies revealed that there was no interaction between drug and polymers. DSC and PXRD indicated conversion of crystalline to amorphous form of furosemide. Conclusion: The dissolution rate of furosemide can be enhanced to a great extent by liquisolid technique.


2021 ◽  
Vol 9 (2) ◽  
pp. 127-135
Author(s):  
Anil Raosaheb Pawar ◽  
Pralhad Vitthalrao Mundhe ◽  
Vinayak Kashinath Deshmukh ◽  
Ramdas Bhanudas Pandhare ◽  
Tanaji Dilip Nandgude

The aim of the present study was to formulate solid dispersion (SD) of Mesalamine to enrich the aqueous solubility and dissolution rate. Mesalamine is used in the management of acute ulcerative colitis and for the prevention of relapse of active ulcerative colitis. In the present study, Solid dispersion of Mesalamine was prepared by Fusion and Solvent evaporation method with different polymers. SD’s were characterized by % practical yield, drug content, Solubility, FT-IR, PXRD (Powder X- ray diffractometry), SEM (Scanning electron microscopy), in vitro dissolution studies and Stability studies. The percent drug release of prepared solid dispersion of Mesalamine by fusion and solid dispersion method (FM47, FM67, SE47 and SE67) in 1:7 ratio was found 81.36±0.41, 86.29±0.64, 82.45±0.57and 87.25±1.14 respectively. The aqueous solubility and percent drug release of solid dispersion of Mesalamine by both methods was significantly increased. The PXRD demonstrated that there was a significant decrease in crystallinity of pure drug present in the solid dispersions, which resulted in an increased aqueous solubility and dissolution rate of Mesalamine.The significant increase in aqueous solubility and dissolution rate of Mesalamine was observed in solid dispersion as the crystallinity of the drug decreased, absence of aggregation and agglomeration, increased wetability and good dispersibility after addition of PEG 4000 and PEG 6000.


Author(s):  
Hemant A. Deokule ◽  
Smita S. Pimple ◽  
Praveen D. Chaudhari ◽  
Ajit S. Kulkarni

Fast dissolving strips are used as novel approaches, as it dissolves rapidly in mouth and directly reaches the systemic circulation. In present research work, an attempt has been made to prepare mouth dissolving strips of Metoclopramide hydrochloride by using a novel film former Pullulan by solvent casting method. A33 full factorial design was utilized for the optimization of the effect of independent variables such as the amount of Pullulan, amount of PEF 400, amount of SSG on mechanical properties, and % drug release of strips. The drug compatibility studies using FTIR and DSC studies formulated strips were characterized for their physicochemical parameter like weight variation, visual appearance, folding endurance, thickness, disintegration time, drug content, and in vitro dissolution studies. FTIR and DSC studies revealed that the polymer is compatible with the drug. It was found that the optimum levels of the responses for a fast release strip could be obtained at low levels of Pullulan, PEG400, and SSG. The prepared strip was clear transparent and had a smooth surface. The surface pH was found 4.8 to 5.2 be in the range of to which is close to salivary pH, which indicates that strips may have less potential to irritate the oral mucosa, thereby they are comfortable. The drug release was found to be between 90.94 to 100.5% in 2 min. The in-vitro disintegration time of strips prepared with Pullulan was in the range of 19 to 57 sec. As the concentration of SSG increases the decrease in the disintegration time of strips a decrease. The dissolution rate increased with an increase in the concentration of SSG. Hence, it can be inferred that the fast dissolving oral strips of Metoclopramide hydrochloride may produce rapid action thereby improving bioavailability and enhance the absorption by avoiding the first-pass effect.


Sign in / Sign up

Export Citation Format

Share Document