scholarly journals Parametric Models and Process Map for Alternating Current Square-Waveform Welding of Heat-Resistant Steel

Author(s):  
Uttam Kumar Mohany ◽  
Yohei Abe ◽  
Takahiro Fujimoto ◽  
Mitsuyoshi Nakatani ◽  
Akikazu Kitagawa ◽  
...  

The demand for efficient processes through a comprehensive understanding and optimization of welding conditions continues to grow in the manufacturing industry. This study involves heat-resistant 2.25 Cr-1 Mo V-groove steel welding using the square-waveform alternating cur-rent. Experiments were conducted to build the relationship between input variables—such as current, frequency, electrode negativity ratio, and welding speed—and process performance, such as penetration, bay area, deposition rate, melting efficiency, percentage dilution, flux–wire ratio, and heat input. The process was analyzed in light of the defect-free high-deposition weld groove weld, the sensitivity to process parameters, and the optimization and development of the process map. The study proposes an innovative approach to reducing the cost and time of optimizing the one-pass-each-layer V-groove welding process using bead-on-plate welds. Square waveform welding creates a metallurgical notch in the form of a bay at the fusion boundary that can be minimized by selecting appropriate welding conditions. The square waveform submerged arc welding is more sensitive towards changes in current and welding speed than the frequency and electrode negativity ratio; however, the electrode negativity ratio and frequency are minor but helpful parameters to achieve optimal results. The proximity of the planned and experimental results to within 3% confirms the validity of the proposed approach. The investigation shows that 90% of the maximum deposition rate is possible for one-pass-each-layer V-groove welds within heat input and weld width constraints.

Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 998
Author(s):  
Qing Shao ◽  
Fuxing Tan ◽  
Kai Li ◽  
Tatsuo Yoshino ◽  
Guikai Guo

To control the welding residual stress and deformation of metal inert gas (MIG) welding, the influence of welding process parameters and preheat parameters (welding speed, heat input, preheat temperature, and preheat area) is discussed, and a prediction model is established to select the optimal combination of process parameters. Thermomechanical numerical analysis was performed to obtain the residual welding deformation and stress according to a 100 × 150 × 50 × 4 mm aluminum alloy 6061-T6 T-joint. Owing to the complexity of the welding process, an optimal Latin hypercube sampling (OLHS) method was adopted for sampling with uniformity and stratification. Analysis of variance (ANOVA) was used to find the influence degree of welding speed (7.5–9 mm/s), heat input (1500–1700 W), preheat temperature (80–125 °C), and preheat area (12–36 mm). The range of research parameters are according to the material, welding method, thickness of the welding plate, and welding procedure specification. Artificial neural network (ANN) and multi-objective particle swarm optimization (MOPSO) was combined to find the effective parameters to minimize welding deformation and stress. The results showed that preheat temperature and welding speed had the greatest effect on the minimization of welding residual deformation and stress, followed by the preheat area, respectively. The Pareto front was obtained by using the MOPSO algorithm with ε-dominance. The welding residual deformation and stress are the minimum at the same time, when the welding parameters are selected as preheating temperature 85 °C and preheating area 12 mm, welding speed is 8.8 mm/s and heat input is 1535 W, respectively. The optimization results were validated by the finite element (FE) method. The error between the FE results and the Pareto optimal compromise solutions is less than 12.5%. The optimum solutions in the Pareto front can be chosen by designers according to actual demand.


Author(s):  
Parviz Asadi ◽  
Samaneh Alimohammadi ◽  
Omid Kohantorabi ◽  
Ali Soleymani ◽  
Ali Fazli

A numerical investigation is provided to study the residual stress states in multi-pass TIG welding of stainless steel SUS304 pipe. An uncoupled thermomechanical three-dimensional finite element model is developed using the ABAQUS software for a circular weld design around the pipe. The effects of weld pass numbers, electrode moving speed, and heat input on the internal and external surface tensions of the pipe are investigated. The simulation results show that by increasing the welding speed, the axial tensile stresses decrease on the pipe surfaces. In the case of hoop stress, as the welding speed raises, the tensile and compressive stresses are increased for both two- and three-pass welding. However, the width of the stress zone becomes narrower in higher welding speeds. The hoop stresses, in comparison with the axial stresses, are more strongly influenced by the welding speed and the heat input. Furthermore, using the three-pass welding process results in much lower stresses in comparison with the two-pass one.


2018 ◽  
Vol 8 (10) ◽  
pp. 1997 ◽  
Author(s):  
Yu Zhan ◽  
Enda Zhang ◽  
Yiming Ge ◽  
Changsheng Liu

Laser welding is widely used in titanium alloy welding due to its high energy density, small heat affected zone, and rapid processing ability. However, problems with laser welding, such as deformation and cracking caused by residual stress, need to be resolved. In this paper, the residual stress in laser welding of TC4 titanium alloy was studied using an ultrasonic laser. The residual stress in titanium alloy plates is considered a plane stress state. A pre-stress loading method is proposed and acoustoelastic coefficients are obtained. Based on the known acoustoelastic coefficients, the transverse and longitudinal residual stresses in laser welding are measured using an ultrasonic laser. The results show that longitudinal residual stress is greater than the transverse stress. The distribution regularity of the residual stress is similar to normal welding, but the tensile stress zone is much narrower. Then, the influence of heat input and welding speed on residual stress is discussed. With increasing heat input, the welding zone widens, and the peak value of the residual stress increases. A higher welding speed should be chosen when the welding power is constant. This research has important significance for the measurement and control of residual stress in the laser welding process.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1494
Author(s):  
Ran Li ◽  
Manshu Dong ◽  
Hongming Gao

Bead size and shape are important considerations for industry design and quality detection. It is hard to deduce an appropriate mathematical model for predicting the bead geometry in a continually changing welding process due to the complex interrelationship between different welding parameters and the actual bead. In this paper, an artificial neural network model for predicting the bead geometry with changing welding speed was developed. The experiment was performed by a welding robot in gas metal arc welding process. The welding speed was stochastically changed during the welding process. By transient response tests, it was indicated that the changing welding speed had a spatial influence on bead geometry, which ranged from 10 mm backward to 22 mm forward with certain welding parameters. For this study, the input parameters of model were the spatial welding speed sequence, and the output parameters were bead width and reinforcement. The bead geometry was recognized by polynomial fitting of the profile coordinates, as measured by a structured laser light sensor. The results showed that the model with the structure of 33-6-2 had achieved high accuracy in both the training dataset and test dataset, which were 99% and 96%, respectively.


Author(s):  
HaiYang Lei ◽  
YongBing Li ◽  
Blair E. Carlson ◽  
ZhongQin Lin

In order to meet the upcoming regulations on greenhouse gas emissions, aluminum use in the automotive industry is increasing. However, this increase is now seen as part of a multimaterial strategy. Consequently, dissimilar material joints are a reality, which poses significant challenges to conventional fusion joining processes. To address this issue, cold metal transfer (CMT) spot welding process was developed in the current study to join aluminum alloy AA6061-T6 as the top sheet to hot dip galvanized (HDG) advanced high strength steel (AHSS) DP590 as the bottom sheet. Three different welding modes, i.e., direct welding (DW) mode, plug welding (PW) mode, and edge plug welding (EPW) mode were proposed and investigated. The DW mode, having no predrilled hole in the aluminum top sheet, required concentrated heat input to melt through the Al top sheet and resulted in a severe tearing fracture, shrinkage voids, and uneven intermetallic compounds (IMC) layer along the faying surface, leading to poor joint properties. Welding with the predrilled hole, PW mode, required significantly less heat input and led to greatly reduced, albeit uneven, IMC layer thickness. However, it was found that the EPW mode could homogenize the welding heat input into the hole and thus produce the most stable welding process and best joint quality. This led to joints having an excellent joint morphology characterized by the thinnest IMC layer and consequently, best mechanical performance among the three modes.


2011 ◽  
Vol 110-116 ◽  
pp. 3191-3198
Author(s):  
Sadegh Moeinifar

The high-strength low-alloy microalloyed steel was procured as a hot rolled plate with accelerated cooling. The Gleeble thermal simulated process involved heating the steel specimens to the peak temperature of 1400 °C, with constant cooling rates of 3.75 °C/s and 2 °C/s to room temperature. The four-wire tandem submerged arc welding process, with different heat input, was used to generate a welded microstructure. The martensite/austenite constituent appeared in the microstructure of the heat affected zone region for all the specimens along the prior-austenite grain boundaries and between bainitic ferrite laths. The blocky-like and stringer martensite/austenite morphology were observed in the heat affected zone regions. The martensite/austenite constituents were obtained by a combination of field emission scanning electron microscopes and image analysis software The Charpy absorbed energy of specimens was assessed using Charpy impact testing at-50 °C. Brittle particles, such as martensite/austenite constituent along the grain boundaries, can make an easy path for crack propagation. Similar crack initiation sites and growth mechanism were investigated for specimens welded with different heat input values.


Author(s):  
Nannan Chen ◽  
Hongliang Wang ◽  
Jingjing Li ◽  
Vic Liu ◽  
James Schroth

Abstract Dissimilar materials of copper (Cu) to aluminum (Al) with nickel-phosphorus (Ni-P) coatings were joined using resistance spot welding. The Ni-P coatings were electroless plated on the Al surfaces to eliminate the formation of brittle Cu-Al intermetallic compounds (IMCs) at the faying interface between Cu and Al. Three welding schedules with various heat input were employed to produce different interfacial microstructure. The evolution of interfaces in terms of phase constitution, elemental distribution and defects (gaps and voids) was characterized and the formation mechanisms were elucidated. During the welding process, the bonding between Cu and Ni-P forms through solid-state diffusion, while the faster diffusion rate of Cu relative to Ni and P atoms promotes the generation of sub-micron voids. As the heat input increases, gaps at the Cu/Ni-P interface diminish accompanied by increase of sub-micron voids. A moderate schedule helps to remove the gaps and inhibits the void formation. An Al3Ni layer and nanovoids were found around the interface of Ni-P/Al. The increased heat input decreases the grain size of Al3Ni at the interface by eutectic remelting and increases the nanovoids by enhanced nanoscale Kirkendall effect.


2021 ◽  
Vol 23 (2) ◽  
pp. 98-115
Author(s):  
Alexey Ivanov ◽  
◽  
Valery Rubtsov ◽  
Andrey Chumaevskii ◽  
Kseniya Osipovich ◽  
...  

Introduction. One of friction stir welding types is the bobbin friction stir welding (BFSW) process, which allows to obtain welded joints in various configurations without using a substrate and axial embedding force, as well as to reduce heat loss and temperature gradient across the welded material thickness. This makes the BFSW process effective for welding aluminum alloys, which properties are determined by their structural-phase state. According to research data, the temperature and strain rate of the welded material have some value intervals in which strong defect-free joints are formed. At the same time, much less attention has been paid to the mechanisms of structure formation in the BFSW process. Therefore, to solve the problem of obtaining defect-free and strong welded joints by BFSW, an extended understanding of the basic mechanisms of structure formation in the welding process is required. The aim of this work is to research the mechanisms of structure formation in welded joint of AA2024 alloy obtained by bobbin tool friction stir welding with variation of the welding speed. Results and discussion. Weld formation conditions during BFSW process are determined by heat input into a welded material, its fragmentation and plastic flow around the welding tool, which depend on the ratio of tool rotation speed and tool travel speed. Mechanisms of joint formation are based on a combination of equally important processes of adhesive interaction in “tool-material” system and extrusion of metal into the region behind the welding tool. Combined with heat dissipation conditions and the configuration of the “tool-material” system, this leads to material extrusion from a welded joint and its decompaction. This results in formation of extended defects. Increasing in tool travel speed reduce the specific heat input, but in case of extended joints welding an amount of heat released in joint increases because of specific heat removal conditions. As a result, the conditions of adhesion interaction and extrusion processes change, which leads either to the growth of existing defects or to the formation of new ones. Taking into account the complexity of mechanisms of structure formation in joint obtained by BFSW, an obtaining of defect-free joints implies a necessary usage of various nondestructive testing methods in combination with an adaptive control of technological parameters directly in course of a welding process.


2013 ◽  
Vol 339 ◽  
pp. 700-705 ◽  
Author(s):  
Victor Lopez ◽  
Arturo Reyes ◽  
Patricia Zambrano

The effect of heat input on the transformation of retained austenite steels transformation induced plasticity (TRIP) was investigated in the heat affected zone (HAZ) of the Gas Metal Arc Welding GMAW process. The determination of retained austenite of the HAZ is important in optimizing the welding parameters when welding TRIP steels, because this will greatly influence the mechanical properties of the welding joint due to the transformation of residual austenite into martensite due to work hardening. Coupons were welded with high and low heat input for investigating the austenite transformation of the base metal due to heat applied by the welding process and was evaluated by optical microscopy and the method of X-Ray Diffraction (XRD). Data analyzed shows that the volume fraction of retained austenite in the HAZ increases with the heat input applied by the welding process, being greater as the heat input increase and decrease the cooling rate, this due to variation in the travel speed of the weld path.


Sign in / Sign up

Export Citation Format

Share Document