scholarly journals EVALUASI HEMATOTOKSIK SECARA IN VITRO NANOPARTIKEL ZnS HASIL REDUKSI BIOMATRIKS Eschericia coli

2020 ◽  
Vol 23 (3) ◽  
pp. 82-84
Author(s):  
Lisa Kurniati ◽  
Andi Arjuna ◽  
Sukamto S Mamada

Nanopartikel ZnS merupakan material semi konduktor yang memiliki sifat unik dan manfaat yang besar dibidang kesehatan, terutama sebagai antibakteri dan biomarker kanker. Walaupun demikian, informasi mengenai toksisitas dari nanopartikel ZnS masih sangat terbatas. Oleh karena itu, pada penelitian ini telah dilakukan evaluasi hematotoksisitas secara in vitro nanopartikel ZnS hasil reduksi biomatriks Escherichia coli. Penyiapan nanopartikel ZnS diawali dengan pencampuran dispersi ZnSO4 konsentrasi 200 bpj ke dalam medium Luria Bertani Broth (LBB) yang ditumbuhi E.Coli  sebagai bioreduktor. Produk yang dihasilkan dikarakterisasi dengan uji photolimunisence (PL) dan spektrofotometri pada rentang panjang gelombang 250-700 nm. Hasilnya, nanopartikel ZnS berpendar biru dan diidentifikasi pada λmax 288 nm dengan absorbansi 0,905. Partikel yang dihasilkan kemudian didispersikan dengan variasi volume 30 µl, 40 µl, 50 µl pada larutan tyrod. Data persentase hemolisis secara berturut-turut adalah 32%, 39%, 22%, 0% (kontrol negatif) dan 100% (kontrol positif). Sehingga dapat disimpulkan bahwa nanopartikel ZnS hasil reduksi E.coli memberikan efek toksik terhadap sel darah merah

2016 ◽  
pp. 39-44
Author(s):  
Ifra Tun Nur ◽  
Jannatun Tahera ◽  
Md Sakil Munna ◽  
M Majibur Rahman ◽  
Rashed Noor

With a previous observation of Escherichia coli growth cessation along with temperature variation within three different bacteriological culture media (nutrient agar, Luria-Bertani agar and minimal agar), current investigation further depicted on the possible growth dynamics of Escherichia coli (SUBE01) and Salmonella (SUBS01) growth and viability upon supplementation of different carbon sources (dextrose, sucrose, lactose, glycerol and tween 20) at 37°C under the aeration of 100 rpm. Viability of the tested bacterial species was assessed through the enumeration of the colony forming unit (cfu) appeared upon prescribed incubation for 12-24 hours on different agar plates consisting of the above mentioned carbon sources. Besides, to inspect the cellular phenotypic changes, morphological observations were conducted under the light microscope. Variations in bacterial growth (either growth acceleration or cessation) were further noticed through the spot tests on the agar plates. Considerable shortfalls in the culturable cells of E. coli and Salmonella spp. were noted in the minimal media separately consisting of sucrose, lactose, glycerol or tween 20 while an opposite impact of accelerated growth was noticed in the media supplied with dextrose. The data revealed a hierarchy of consequence of carbon sources as nutrient generators whereby the favourable bacterial growth and survival order of the carbon sources was estimated as dextrose > glycerol > lactose > tween 20 > sucrose.Bangladesh J Microbiol, Volume 32, Number 1-2,June-Dec 2015, pp 39-44


Antibiotics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 692
Author(s):  
Cecilia Martini ◽  
Francesca Longo ◽  
Raffaella Castagnola ◽  
Luca Marigo ◽  
Nicola Maria Grande ◽  
...  

The aim of this study was to evaluate the antibacterial properties of graphene oxide (GO) against Enterococcus faecalis in vitro conditions and when used to coat dentin surface to prevent E. faecalis adhesion. The ATCC strain of E. faecalis 29212 has been used to perform a viability test. The pellet was suspended in ultrapure water, NaCl, PBS buffer, CaCl2 and MgCl2, Luria−Bertani broth solutions. The viability was evaluated by the colony forming unit counting method. Atomic force microscopy images and the measure of surface zeta potential variation were analyzed. Dentin discs were covered with a film of GO (n = 15) or were not treated (n = 15). Bacterial suspension was added to each sample of dentine discs and microbial counts were calculated. Statistically significant differences between two groups were assessed by a two-tailed unpaired t-test. Bacteria cell morphology was investigated with scanning electron microscopy. The highest growth inhibition was obtained in ddH2O and CaCl2 solution while, in PBS and NaCl, GO had poor antibacterial efficacy with a growth enhancing effect in the latter. GO on dentin discs demonstrated high antibacterial activity. GO film has demonstrated acceptable adhesion properties to root dentin and a role in the inhibition of bacterial film proliferation and biofilm formation.


2002 ◽  
Vol 70 (5) ◽  
pp. 2640-2649 ◽  
Author(s):  
A. M. Prouty ◽  
W. H. Schwesinger ◽  
J. S. Gunn

ABSTRACT Salmonellae can exist in an asymptomatic carrier state in the human gallbladder. Individuals with gallstones are more likely to become typhoid carriers, and antibiotic treatments are often ineffectual against Salmonella enterica serovar Typhi in carriers with gallstones. Therefore, we hypothesized that Salmonella spp. form biofilms on the surfaces of gallstones, where the bacteria are protected from high concentrations of bile and antibiotics. A number of methods were utilized to examine biofilm formation on human gallstones and glass coverslips in vitro, including confocal, light, and scanning electron microscopy. In our assays, salmonellae formed full biofilms on the surfaces of gallstones within 14 days and appeared to excrete an exopolysaccharide layer that bound them to the surfaces and to other bacteria. Efficient biofilm formation on gallstones was dependent upon the presence of bile, as a biofilm did not form on gallstones within 14 days in Luria-Bertani broth alone. The biofilms formed by a Salmonella enterica serovar Typhi Vi antigen mutant, as well as strains with mutations in genes that eliminate production of four different fimbriae, were indistinguishable from the biofilms formed by the parents. Mutants with an incomplete O-antigen, mutants that were nonmotile, and mutants deficient in quorum sensing were unable to develop complete biofilms. In addition, there appeared to be selectivity in salmonella binding to the gallstone surface that did not depend on the topology or surface architecture. These studies should aid in the understanding of the Salmonella carrier state, an important but underresearched area of typhoid fever pathogenesis. If the basis of carrier development can be understood, it may be possible to identify effective strategies to prevent or treat this chronic infection.


Microbiology ◽  
2009 ◽  
Vol 155 (1) ◽  
pp. 106-114 ◽  
Author(s):  
Sarah C. Pulvermacher ◽  
Lorraine T. Stauffer ◽  
George V. Stauffer

In Escherichia coli, the gcvB gene encodes a small non-translated RNA that regulates several genes involved in transport of amino acids and peptides (including sstT, oppA and dppA). Microarray analysis identified cycA as an additional regulatory target of GcvB. The cycA gene encodes a permease for the transport of glycine, d-alanine, d-serine and d-cycloserine. RT-PCR confirmed that GcvB and the Hfq protein negatively regulate cycA mRNA in cells grown in Luria–Bertani broth. In addition, deletion of the gcvB gene resulted in increased sensitivity to d-cycloserine, consistent with increased expression of cycA. A cycA : : lacZ translational fusion confirmed that GcvB negatively regulates cycA expression in Luria–Bertani broth and that Hfq is required for the GcvB effect. GcvB had no effect on cycA : : lacZ expression in glucose minimal medium supplemented with glycine. However, Hfq still negatively regulated the fusion in the absence of GcvB. A set of transcriptional fusions of cycA to lacZ identified a sequence in cycA necessary for regulation by GcvB. Analysis of GcvB identified a region complementary to this region of cycA mRNA. However, mutations predicted to disrupt base-pairing between cycA mRNA and GcvB did not alter expression of cycA : : lacZ. A model for GcvB function in cell physiology is discussed.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Lorraine T. Stauffer ◽  
George V. Stauffer

The Escherichia coli gcvB gene encodes a small RNA that regulates many genes involved in the transport of dipeptides, oligopeptides, and amino acids (oppA, dppA, cycA, and sstT). A microarray analysis of RNA isolated from an E. coli wild-type and a ΔgcvB strain grown to midlog phase in Luria-Bertani broth indicated that genes not involved in transport are also regulated by GcvB. One gene identified was slp that encodes an outer membrane lipoprotein of unknown function induced when cells enter stationary phase. The aim of this study was to verify that slp is a new target for GcvB-mediated regulation. In this study we used RT-PCR to show that GcvB regulates slp mRNA levels. GcvB negatively controls slp::lacZ in cells grown in Luria-Bertani broth by preventing an Hfq-mediated activation mechanism for slp::lacZ expression. In contrast, in glucose minimal medium supplemented with glycine, GcvB is required for inhibition of slp::lacZ expression, and Hfq prevents GcvB-mediated repression. Thus, GcvB regulates slp in both LB and in glucose minimal + glycine media and likely by mechanisms different than how it regulates sstT, dppA, cycA, and oppA. Repression of slp by GcvB results in an increase in resistance to chloramphenicol, and overexpression of slp in a ΔgcvB strain results in an increase in sensitivity to chloramphenicol.


2001 ◽  
Vol 69 (7) ◽  
pp. 4610-4617 ◽  
Author(s):  
Renato L. Santos ◽  
Renée M. Tsolis ◽  
Shuping Zhang ◽  
Thomas A. Ficht ◽  
Andreas J. Bäumler ◽  
...  

ABSTRACT Salmonella enterica serovar Typhimurium causes cell death in bovine monocyte-derived and murine macrophages in vitro by asipB-dependent mechanism. During this process, SipB binds and activates caspase-1, which in turn activates the proinflammatory cytokine interleukin-1β through cleavage. We used bovine ileal ligated loops to address the role of serovar Typhimurium-induced cell death in induction of fluid accumulation and inflammation in this diarrhea model. Twelve perinatal calves had 6- to 9-cm loops prepared in the terminal ileum. They were divided into three groups: one group received an intralumen injection of Luria-Bertani broth as a control in 12 loops. The other two groups (four calves each) were inoculated with 0.75 × 109 CFU of either wild-type serovar Typhimurium (strain IR715) or a sopB mutant per loop in 12 loops. Hematoxylin and eosin-stained sections were scored for inflammation, and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL)-positive cells were detected in situ. Fluid accumulation began at 3 h postinfection (PI). Inflammation was detected in all infected loops at 1 h PI. The area of TUNEL-labeled cells in the wild-type infected loops was significantly higher than that of the controls at 12 h PI, when a severe inflammatory response and tissue damage had already developed. ThesopB mutant induced the same amount of TUNEL-positive cells as the wild type, but it was attenuated for induction of fluid secretion and inflammation. Our results indicate that serovar Typhimurium-induced cell death is not required to trigger an early inflammatory response and fluid accumulation in the ileum.


2010 ◽  
Vol 54 (4) ◽  
pp. 1526-1533 ◽  
Author(s):  
Eliah R. Shamir ◽  
Michelle Warthan ◽  
Sareena P. Brown ◽  
James P. Nataro ◽  
Richard L. Guerrant ◽  
...  

ABSTRACT Enteroaggregative Escherichia coli (EAEC) strains have emerged as common causes of persistent diarrhea and malnutrition among children and HIV-infected persons. During infection, EAEC typically adheres to the intestinal mucosa via fimbrial adhesins, which results in a characteristic aggregative pattern. In the study described here we investigated whether the broad-spectrum antiparasitic and antidiarrheal drug nitazoxanide (NTZ) might be active against EAEC in vitro. While E. coli strains were resistant to NTZ in rich Luria-Bertani medium (MIC > 64 μg/ml), the drug was slightly inhibitory in a minimal medium supplemented with glucose (MinA-G medium; MIC, ∼32 μg/ml). NTZ also inhibited biofilm production by strain EAEC 042 in both Dulbecco's modified Eagle's medium and MinA-G medium with a 50% inhibitory concentration of ∼12 μg/ml. Immunofluorescence and immunoblot analyses with antibody against the major fimbrial subunit AafA of aggregative adherence fimbriae vaariant II (AAF/II) established that the numbers of AAF/II filaments on bacteria grown in the presence of NTZ were dramatically reduced. Comparative quantitative reverse transcription-PCR and reporter gene fusions (aafA::phoA) indicated that aafA expression was unaffected by NTZ, while aggR transcript levels and aggR::lacZ expression were increased ∼10- and 2.5-fold, respectively, compared with that for the untreated controls. More generally, NTZ inhibited hemagglutination (HA) of red blood cells by the non-biofilm-producing strain JM221 expressing either AAF/I or type I fimbriae. Our findings suggest that the inhibitory action of NTZ on biofilm formation and HA is likely due to inhibition of fimbrial assembly. Antimicrobial agents that inhibit the assembly or function of fimbrial filaments should be good candidates for the prevention of infection.


Microbiology ◽  
2009 ◽  
Vol 155 (1) ◽  
pp. 115-123 ◽  
Author(s):  
Sarah C. Pulvermacher ◽  
Lorraine T. Stauffer ◽  
George V. Stauffer

The gcvB gene encodes a small non-translated RNA (referred to as GcvB) that regulates oppA and dppA, two genes that encode periplasmic binding proteins for the oligopeptide and dipeptide transport systems. Hfq, an RNA chaperone protein, binds many small RNAs and is required for the small RNAs to regulate expression of their respective target genes. We showed that repression by GcvB of dppA : : lacZ and oppA : : phoA translational fusions is dependent upon Hfq. Double mutations in gcvB and hfq yielded similar expression levels of dppA : : lacZ and oppA : : phoA compared with gcvB or hfq single mutations, suggesting that GcvB and Hfq repress by the same mechanism. The effect of Hfq is not through regulation of transcription of gcvB. Hfq is known to increase the stability of some small RNAs and to facilitate the interactions between small RNAs and specific mRNAs. In the absence of Hfq, there is a marked decrease in the half-life of GcvB in cells grown in both Luria–Bertani broth and glucose minimal medium with glycine, suggesting that part of the role of Hfq is to stabilize GcvB. Overproduction of GcvB in wild-type Escherichia coli results in superrepression of a dppA : : lacZ fusion, but overproduction of GcvB in an hfq mutant does not result in significant repression of the dppA : : lacZ fusion. These results suggest that Hfq also is likely required for GcvB–mRNA pairing.


Acta Naturae ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 129-132 ◽  
Author(s):  
A. Mathlouthi ◽  
E. Pennacchietti ◽  
D. De Biase

Acid resistance (AR) in Escherichia coli is an important trait that protects this microorganism from the deleterious effect of low-pH environments. Reports on biofilm formation in E. coli K12 showed that the genes participating in AR were differentially expressed. Herein, we investigated the relationship between AR genes, in particular those coding for specific transcriptional regulators, and their biofilm-forming ability at the phenotypic level. The latter was measured in 96-well plates by staining the bacteria attached to the well, following 24-hour growth under static conditions, with crystal violet. The growth conditions were as follows: Luria Bertani (LB) medium at neutral and acidic pH, at 37C or 25C. We observed that the three major transcriptional regulators of the AR genes (gadX, gadE, gadW) only marginally affected biofilm formation in E. coli. However, a striking and novel finding was the different abilities of all the tested E. coli strains to form a biofilm depending on the temperature and pH of the medium: LB, pH 7.4, strongly supported biofilm formation at 25C, with biofilm being hardly detectable at 37C. On the contrary, LB, pH 5.5, best supported biofilm formation at 37C. Moreover, we observed that when E. coli carried a plasmid, the presence of the plasmid itself affected the ability to develop a biofilm, typically by increasing its formation. This phenomenon varies from plasmid to plasmid, depends on growth conditions, and, to the best of our knowledge, remains largely uninvestigated.


Sign in / Sign up

Export Citation Format

Share Document