scholarly journals Pemantapan Proses Sintesis Ligan Dibutilditiokarbamat (DBDTK) Sebagai Pengekstrak Logam Tanah Jarang Berdasarkan Desain Eksperimen

2018 ◽  
Vol 14 (2) ◽  
pp. 219
Author(s):  
Diana Hendrati ◽  
Erianti Siska Purnamasari ◽  
Syulastri Effendi ◽  
Santhy Wyantuti

<p>Gadolinium (Gd) merupakan salah satu logam tanah jarang, dimana logam tanah jarang dapat diekstrak dari mineral salah satunya mineral monasit. Logam Gd biasanya digunakan sebagai bahan dasar <em>contrast agent</em> dalam dunia kesehatan. Ligan dibutilditiokarbamat mampu membentuk senyawa kompleks dengan cara mengikat logam sehingga membentuk khelat yang dapat digunakan untuk ekstraksi. Tujuan dari penelitian ini adalah memantapkan sintesis ligan dibutilditiokarbamat berdasarkan desain eksperimen dan karakterisasi kompleks antara Gd(III) dengan ligan dibutilditiokarbamat hasil sintesis. Penelitian ini diawali dengan pembuatan desain eksperimen untuk sintesis ligan dan ekstraksi Gd(III) dengan ligan, kemudian proses sintesis dan ekstraksi dilakukan sesuai dengan desain eksperimen, hasil sintesis dan ekstraksi dikarakterisasi menggunakan metode spektroskopi serta diuji kelarutannya dalam pelarut organik. Data yang diperoleh menunjukkan bahwa sintesis ligan dibutilditiokarbamat optimal pada suhu 4 °C, perbandingan dibutilamin dan karbondisulfida yaitu 1 : 3 dengan perbandingan mol ammonia terhadap dibutilamin yaitu 1 : 4, sedangkan kondisi optimal untuk ekstraksi Gd(III) dengan ligan yaitu pada pH 6, dengan perbandingan mol Gd(III) dan ligan yaitu 1 : 4 dan lama ekstraksi 60 menit. Oleh karena itu ligan dibutilditiokarbamat hasil sintesis berpotensi digunakan sebagai ekstraktan untuk ekstraksi Gd(III). Hasil prediksi ligan berdasarkan desain eksperimen yaitu sebesar 56,12% sedangkan prediksi ekstraksi Gd(III) dengan ligan hasil sintesis diperoleh sebesar 78,41%.</p><p><strong>The Consolidation of Dibutyldithiocarbamate (DBDTC) Synthesis as Gadolinium Metal Extraction Based On Experimental Design. </strong>Gadolinium (Gd) is one of the rare-earth elements, whereas rare-earth elements can be extracted from monazite. Gd is usually used as raw material for synthesizing contrast agent<em> </em>in medicine field. Dibuthyldithiocarbamate ligand can form a complex compound with metal. This ligand will bind a metal and then forming chelate which is used for extraction. The purpose of this research is to ensure procedure of dibuthyldithiocarbamate ligand synthesis based on the design of experiment and to study the characterization of reaction result between Gd(III) and dibuthyldithiocarbamate ligand which this ligand is synthesis result. This research begins with making design of experiment for ligand synthesis and Gd(III) extraction with ligand, then perform the process of synthesis and extraction according to the design of experiment, the result of synthesis and extraction were characterized by spectroscopy method and solubility tested in organic solvent. The data was collected indicate that the optimal condition of dibuthyldithiocarbamate ligan synthesis at 4 °C (temperature), the ratio of di-n-butylamine and carbon disulphide is 1:3 with the mole ratio of ammonia to the di-n-butylamine 1:4, while the optimal conditions for gadolinium extraction with ligand at pH 6, the mol ratio of gadolinium and ligand is 1:4 and 60 minutes extraction time. Hence, dibuthyldithiocarbamate ligand can be used as extractan for extracting Gd(III). The prediction of ligand based on the experimental design is 56.12% while the prediction of Gd(III) extraction with ligand of the synthesis result is obtained equal to 78.41%. The conclusion of this research is that the synthesis of dibuthyldithiocarbamate ligand based on the experimental design can be developed for large-scale synthesis.</p>

2018 ◽  
Vol 14 (1) ◽  
pp. 195
Author(s):  
Diana Hendrati ◽  
Erianti Siska Purnamasari ◽  
Syulastri Effendi ◽  
Santhy Wyantuti

<p>Gadolinium (Gd) merupakan salah satu logam tanah jarang, dimana logam tanah jarang dapat diekstrak dari mineral salah satunya mineral monasit. Logam Gd biasanya digunakan sebagai bahan dasar <em>contrast agent</em> dalam dunia kesehatan. Ligan dibutilditiokarbamat mampu membentuk senyawa kompleks dengan cara mengikat logam sehingga membentuk khelat yang dapat digunakan untuk ekstraksi. Tujuan dari penelitian ini adalah memantapkan sintesis ligan dibutilditiokarbamat berdasarkan desain eksperimen dan karakterisasi kompleks antara Gd(III) dengan ligan dibutilditiokarbamat hasil sintesis. Penelitian ini diawali dengan pembuatan desain eksperimen untuk sintesis ligan dan ekstraksi Gd(III) dengan ligan, kemudian proses sintesis dan ekstraksi dilakukan sesuai dengan desain eksperimen, hasil sintesis dan ekstraksi dikarakterisasi menggunakan metode spektroskopi serta diuji kelarutannya dalam pelarut organik. Data yang diperoleh menunjukkan bahwa sintesis ligan dibutilditiokarbamat optimal pada suhu 4 °C, perbandingan dibutilamin dan karbondisulfida yaitu 1 : 3 dengan perbandingan mol ammonia terhadap dibutilamin yaitu 1 : 4, sedangkan kondisi optimal untuk ekstraksi Gd(III) dengan ligan yaitu pada pH 6, dengan perbandingan mol Gd(III) dan ligan yaitu 1 : 4 dan lama ekstraksi 60 menit. Oleh karena itu ligan dibutilditiokarbamat hasil sintesis berpotensi digunakan sebagai ekstraktan untuk ekstraksi Gd(III). Hasil prediksi ligan berdasarkan desain eksperimen yaitu sebesar 56,12% sedangkan prediksi ekstraksi Gd(III) dengan ligan hasil sintesis diperoleh sebesar 78,41%. Kesimpulan dari penelitian ini bahwa sintesis ligan dibutilditiokarbamat  berdasarkan desain eksperimen dapat dikembangkan untuk sintesis skala besar.</p><p>Gadolinium (Gd) is one of the rare-earth elements, whereas rare-earth elements can be extracted from monazite. Gd is usually used as raw material for synthesizing contrast agent<em> </em>in medicine field. Dibuthyldithiocarbamate ligand can form a complex compound with metal. This ligand will bind a metal and then forming chelate which is used for extraction. The purpose of this research is to ensure procedure of dibuthyldithiocarbamate ligand synthesis based on the design of experiment and to study the characterization of reaction result between Gd(III) and dibuthyldithiocarbamate ligand which this ligand is synthesis result. This research begins with making design of experiment for ligand synthesis and Gd(III) extraction with ligand, then perform the process of synthesis and extraction according to the design of experiment, the result of synthesis and extraction were characterized by spectroscopy method and solubility tested in organic solvent. The data was collected indicate that the optimal condition of dibuthyldithiocarbamate ligan synthesis at 4 °C (temperature), the ratio of di-n-butylamine and carbon disulphide is 1:3 with the mole ratio of ammonia to the di-n-butylamine 1:4, while the optimal conditions for gadolinium extraction with ligand at pH 6, the mol ratio of gadolinium and ligand is 1:4 and 60 minutes extraction time. Hence, dibuthyldithiocarbamate ligand can be used as extractan for extracting Gd(III). The prediction of ligand based on the experimental design is 56.12% while the prediction of Gd(III) extraction with ligand of the synthesis result is obtained equal to 78.41%. The conclusion of this research is that the synthesis of dibuthyldithiocarbamate ligand based on the experimental design can be developed for large-scale synthesis.</p>


2018 ◽  
Vol 14 (1) ◽  
pp. 84
Author(s):  
Diana Hendrati ◽  
Erianti Siska Purnamasari ◽  
Syulastri Effendi ◽  
Santhy Wyantuti

<p>Gadolinium (Gd) merupakan salah satu logam tanah jarang, dimana logam tanah jarang dapat diekstrak dari mineral salah satunya mineral monasit. Logam Gd biasanya digunakan sebagai bahan dasar <em>contrast agent</em> dalam dunia kesehatan. Ligan dibutilditiokarbamat mampu membentuk senyawa kompleks dengan cara mengikat logam sehingga membentuk khelat yang dapat digunakan untuk ekstraksi. Tujuan dari penelitian ini adalah memantapkan sintesis ligan dibutilditiokarbamat berdasarkan desain eksperimen dan karakterisasi kompleks antara Gd(III) dengan ligan dibutilditiokarbamat hasil sintesis. Penelitian ini diawali dengan pembuatan desain eksperimen untuk sintesis ligan dan ekstraksi Gd(III) dengan ligan, kemudian proses sintesis dan ekstraksi dilakukan sesuai dengan desain eksperimen, hasil sintesis dan ekstraksi dikarakterisasi menggunakan metode spektroskopi serta diuji kelarutannya dalam pelarut organik. Data yang diperoleh menunjukkan bahwa sintesis ligan dibutilditiokarbamat optimal pada suhu 4 °C, perbandingan dibutilamin dan karbondisulfida yaitu 1:3 dengan perbandingan mol ammonia terhadap dibutilamin yaitu 1:4, sedangkan kondisi optimal untuk ekstraksi Gd(III) dengan ligan yaitu pada pH 6, dengan perbandingan mol Gd(III) dan ligan yaitu 1:4 dan lama ekstraksi 60 menit. Oleh karena itu ligan dibutilditiokarbamat hasil sintesis berpotensi digunakan sebagai ekstraktan untuk ekstraksi Gd(III). Hasil prediksi ligan berdasarkan desain eksperimen yaitu sebesar 56,12 % sedangkan prediksi ekstraksi Gd(III) dengan ligan hasil sintesis diperoleh sebesar 78,41 %. Kesimpulan dari penelitian ini bahwa sintesis ligan dibutilditiokarbamat  berdasarkan desain eksperimen dapat dikembangkan untuk sintesis skala besar.</p><p>Gadolinium (Gd) is one of the rare-earth elements, whereas rare-earth elements can be extracted from monazite. Gd is usually used as raw material for synthesizing contrast agent<em> </em>in medicine field. Dibuthyldithiocarbamate ligand can form a complex compound with metal. This ligand will bind a metal and then forming chelate which is used for extraction. The purpose of this research is to ensure procedure of dibuthyldithiocarbamate ligand synthesis based on the design of experiment and to study the characterization of reaction result between Gd(III) and dibuthyldithiocarbamate ligand which this ligand is synthesis result. This research begins with making design of experiment for ligand synthesis and Gd(III) extraction with ligand, then perform the process of synthesis and extraction according to the design of experiment, the result of synthesis and extraction were characterized by spectroscopy method and solubility tested in organic solvent. The data was collected indicate that the optimal condition of dibuthyldithiocarbamate ligan synthesis at 4 °C (temperature), the ratio of di-n-butylamine and carbon disulphide is 1:3 with the mole ratio of ammonia to the di-n-butylamine 1:4, while the optimal conditions for gadolinium extraction with ligand at pH 6, the mol ratio of gadolinium and ligand is 1:4 and 60 minutes extraction time. Hence, dibuthyldithiocarbamate ligand can be used as extractan for extracting Gd(III). The prediction of ligand based on the experimental design is 56.12 % while the prediction of Gd(III) extraction with ligand of the synthesis result is obtained equal to 78.41 %. The conclusion of this research is that the synthesis of dibuthyldithiocarbamate ligand based on the experimental design can be developed for large-scale synthesis.</p>


The unique physical and chemical properties of Gadolinium (Gd) promote an indispensible number of its application for crucial technologies. In order to satisfy the demands of high purity, the various methods are used to separate Gd from other rare earth elements, in which a solvent extraction provides a simple separation method for these elements. However, an optimization of big scale is consequent for the solvent consumption. To overcome such a problem as a contribution in green chemistry, hereby we study the big scale synthesis optimization of dibuthyldithiocarbamate (DBDTC) by full factorial experimental design and the extraction study for Gd(III). This research start with preparing design of experiment for ligand synthesis, then perform the process of synthesis and extraction of Gd(III) according to the design of experiment. The result of synthesis and extraction were characterized by various spectroscopy methods. The highest Scale up ligand synthesis of DBDTC on this research is 20-fold times with 80.03% yield and 1.25% precision. The result shows that the optimal condition for Gd-DBDTC extraction are at pH 6, the mol ratio of gadolinium and ligand is 1:4, and 60 minutes extraction time with 76.52% yield. Therefore, the synthesis of dibuthyldithiocarbamate ligand based on the experimental design can be developed for optimization of large-scale synthesis with high Gd(III) extraction yield.


2021 ◽  
pp. 105733
Author(s):  
B.K. Kenzhaliyev ◽  
T. Yu Surkovа ◽  
M.N. Azlan ◽  
S.B. Yulusov ◽  
B.M. Sukurov ◽  
...  

2017 ◽  
Vol 169 ◽  
pp. 59-67 ◽  
Author(s):  
Ayfer Kilicarslan Sahin ◽  
Daniel Voßenkaul ◽  
Nicolas Stoltz ◽  
Srecko Stopic ◽  
Muhlis Nezihi Saridede ◽  
...  

2020 ◽  
Vol 1 (1) ◽  
pp. 797-806
Author(s):  
Syafrizal Syafrizal ◽  
Andika Satria Pradana ◽  
Ichwan Azwardi ◽  
Satyogroho Dian Amertho ◽  
Mohamad Nur Heriawan ◽  
...  

ABSTRAK PT. Timah Tbk merupakan perusahaan yang memiliki Izin Usaha Pertambangan (IUP) logam timah yang berencana menjadikan komoditas logam tanah jarang sebagai by-product dari ekstraksi logam timah sebagai komoditas utama. Telah diteliti bahwa Mineral Ikutan Timah (MIT) pembawa Rare Earth Elements (REEs) yang jumlahnya cukup dominan pada setiap sampel pemboran yang sudah dilakukan PT Timah Tbk diantaranya adalah ilmenite, rutile, zircon, monazite, xenotime, dan anatase. Eksplorasi terhadap logam timah terus dilakukan oleh PT Timah Tbk. Namun, eksplorasi khusus untuk setiap Mineral Ikutan Timah (MIT) pembawa Rare Earth Elements (REEs) hanya sebatas pada dokumentasi kadar mineral-mineral pembawa REEs pada sampel pemboran saja. Oleh karena itu, pada kesempatan ini, peneliti bertujuan untuk melakukan studi dan analisis distribusi mineral pembawa REEs untuk mencari aspek-aspek penting yang harus diperhatikan oleh PT Timah Tbk dalam merancang SOP (Standar Operasi Prosedur) preparasi hasil sampling eksplorasi yang tepat untuk ekstraksi mineral cassiterite tanpa mengabaikan kehadiran mineral pembawa REEs yang prospek untuk ditambang. Data-data yang digunakan peneliti berasal dari sampel-sampel primer, aluvial, konsentrat, dan tailing yang ada pada setiap daerah yang kemudian dilakukan kuantifikasi kadar mineral-mineral pembawa REEs dengan metode grain counting. Tahap selanjutnya adalah rekapitulasi, pengolahan data, dan penyajian data menggunakan metode-metode statistik. Lalu, akan dilakukan pembahasan, analisis, serta penarikan kesimpulan berdasarkan hasil pengolahan data yang menjawab rumusan masalah dan tujuan dari penelitian ini. Kata kunci :   Mineral Ikutan Timah (MIT), Rare Earth Elements (REEs), Grain Counting, Standar Operasi Prosedur, Sampling Eksplorasi.  ABSTRACT PT Timah Tbk is a state-owned company that has tin metal Mining Business License or well known as Izin Usaha Pertambangan (IUP) which plans to make rare earth metal commodities as a by-product of tin metal extraction as the main commodity. Based on research,  REEs (Rare Earth Elements)-bearing minerals quite dominant in each drilling sample by PT Timah Tbk which are ilmenite, rutile, zircon, monazite, xenotime, dan anatase. Exploration of tin metal still continues by PT Timah Tbk. Nevertheless, the exploration of Rare Earth Metal (REM) is limited to the REEs-bearing minerals grade documentation in the drilling sample only. Therefore, on this occasion, writer aims to study and analyze the distribution of REEs-bearing minerals to look for important aspects that must be considered by PT Timah Tbk in designing the right SOP (Standard Operating Procedure) of exploration sample handling result for cassiterite mineral extraction without ignoring the presence of REEs-bearing minerals that are prospects to be mined. The data which used by the writer originated from primary, alluvial, concentrate, and tailing samples that exist in each region which then quantified the grade of  REEs-bearing minerals using grain counting method. The next step is recapitulation, processing data, and presenting data using statistical methods. Then, discussion, analysis, and conclusions will be conducted based on results of data processing that answer the problem formulation and the purpose of this study.  Keyword    : By-product of tin metal extraction, Rare Earth Elements (REEs), Grain Counting, Standard Operating Procedure, exploration sample handling. 


Minerals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 80 ◽  
Author(s):  
Nan Ju ◽  
Yun-Sheng Ren ◽  
Sen Zhang ◽  
Zhong-Wei Bi ◽  
Lei Shi ◽  
...  

The Saima deposit is a newly discovered niobium deposit which is located in the eastern of Liaoning Province, NE China. Its mineralization age and geochemical characteristics are firstly reported in this study. The Nb orebodies are hosted by the grey–brown to grass-green aegirine nepheline syenite. Detailed petrographical studies show that the syenite consists of orthoclase (~50%), nepheline (~30%), biotite (~15%) and minor arfvedsonite (~3%) and aegirine (~2%), with weak hydrothermal alteration dominated by silicification. In situ LA-ICP-MS zircon U-Pb dating indicates that the aegirine nepheline syenite was emplaced in the Late Triassic (229.5 ± 2.2 Ma), which is spatially, temporally and genetically related to Nb mineralization. These aegirine nepheline syenites have SiO2 contents in the range of 55.86–63.80 wt. %, low TiO2 contents of 0.36–0.64 wt. %, P2O5 contents of 0.04–0.11 wt. % and Al2O3 contents of more than 15 wt. %. They are characterized by relatively high (K2O + Na2O) values of 9.72–15.51 wt. %, K2O/Na2O ratios of 2.42–3.64 wt. % and Rittmann indexes (σ = [ω(K2O + Na2O)]2/[ω(SiO2 − 43)]) of 6.84–17.10, belonging to the high-K peralkaline, metaluminous type. These syenites are enriched in large ion lithophile elements (LILEs, e.g., Cs, Rb and Ba) and light rare earth elements (LREEs) and relatively depleted in high field strength elements (HFSEs, e.g., Nb, Zr and Ti) and heavy rare earth elements (HREEs), with transitional elements showing an obvious W-shaped distribution pattern. Based on these geochronological and geochemical features, we propose that the ore-forming intrusion associated with the Nb mineralization was formed under post-collision continental-rift setting, which is consistent with the tectonic regime of post-collision between the North China Craton and Paleo-Asian oceanic plate during the age in Ma for Indosinian (257–205 Ma). Intensive magmatic and metallogenic events resulted from partial melting of lithospheric mantle occurred during the post-collisional rifting, resulting in the development of large-scale Cu–Mo mineralization and rare earth deposits in the eastern part of Liaoning Province.


2015 ◽  
Vol 1130 ◽  
pp. 543-546 ◽  
Author(s):  
A.J. Murray ◽  
Sarah Singh ◽  
M.R. Tolley ◽  
L.E. Macaskie

Rare earth elements (REEs) are highly valuable due to the complex nature of their extraction from primary and secondary sources. A key feature is that REEs often co-occur with uranium and thorium which, being radioactive, increase the hazard and complexity of REE recovery. A bioprocess which utilizes enzymatically-generated inorganic phosphate to precipitate REEs from solution as their phosphate biominerals is highly effective in the recovery of REEs, effecting rapid recovery onto immobilized bacterial biofilm at high flow-through rates. This also bioprecipitates U and Th. The metal recovery process requires addition of an organic phosphate substrate, e.g. glycerol 2-phosphate (G2P), the cleavage of which provides the inorganic phosphate source for REE biomineralization. G2P is expensive, precluding its large scale use, but early work using uranium showed that tributyl phosphate (TBP) can be used as an alternative phosphate donor molecule. The potential for substitution of G2P by TBP for biorecovery of neodymium is described and a new approach is proposed for enhancing the metal selectivity for REEs against uranium.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Franziska Klimpel ◽  
Michael Bau ◽  
Torsten Graupner

AbstractScandium is a critical raw material that is essential for the EU economy because of its potential application in enabling technologies such as fuel cells and lightweight materials. As there is currently no secure supply of Sc, several projects worldwide evaluate potential Sc sources. While elsewhere in Europe emphasis is placed upon secondary resources such as red mud, we investigated the potential of industrial garnet sand and its waste products. Since Sc readily substitutes for Mg and Fe in the crystal lattice of garnet, the garnet minerals almandine and pyrope, in particular, may show high Sc concentrations. Garnet sand, after being used as an abrasive in the cutting and sandblasting industry, is recycled several times before it is finally considered waste which eventually must be disposed of. Extraction of Sc (and rare earth elements, REE) from such garnet sand may generate added value and thereby reduce disposal cost. The studied garnet sands from different mines in Australia, India and the U.S., and industrial garnet sands commercially available in Germany from different suppliers show average Sc concentrations of 93.7 mg/kg and 90.7 mg/kg, respectively, i.e. similar to red mud. Our data also show that “fresh” and recycled garnet sands yield similar Sc concentrations. Within the framework of a minimum-waste approach, it may be feasible to utilize the industrial waste-product “garnet sand” as an unconventional source of Sc and REE, that reduces disposal cost.


Sign in / Sign up

Export Citation Format

Share Document