scholarly journals Synthesis and Characterization of Bioplastic from Chitosan-Ganyong Starch (Canna edulis)

2017 ◽  
Vol 2 (1) ◽  
pp. 13 ◽  
Author(s):  
Agung Nugroho Catur Saputro ◽  
Arruum Linggar Ovita

<p>The purpose of this study was to produced bioplastic from chitosan-ganyong starch and compare its quality to commercial biodegradable plastic. This research was carried out by experimental method in laboratory. Making bioplastic film was done by dissolving, blending, printing, drying, and neutralizing process. Characterization of bioplastic film was performed by tensile strength test,% elongation, thickness, swelling, solubility, biodegradability and functional group analysis with FTIR. The produced bioplastic characterizations were compared to commercial biodegradable plastics. The results concluded that the qualities of bioplastic chitosan-ganyong starch are  higher than commercial biodegradable plastics on tensile strength parameter (53,9644 Mpa : 18,4109 MPa),% elongation (1,8066 % : 3,7025%), and degradation ability (5 days : 30 days); but lower in thickness parameters (0.0350 mm: 0.0140 mm), % swelling (0.275%: 0.010%), and solubility (0.10%: 0.05%).</p><p><strong> </strong></p><p> </p>

2006 ◽  
Vol 6 (2) ◽  
pp. 375-402 ◽  
Author(s):  
S. Decesari ◽  
S. Fuzzi ◽  
M. C. Facchini ◽  
M. Mircea ◽  
L. Emblico ◽  
...  

Abstract. The chemical composition of carbonaceous aerosols collected during the LBA-SMOCC field experiment, conducted in Rondônia, Brazil, in 2002 during the transition from the dry to the wet season, was investigated by a suite of state-of-the-art analytical techniques. The period of most intense biomass burning was characterized by high concentrations of submicron particles rich in carbonaceous material and water-soluble organic compounds (WSOC). At the onset of the rainy period, submicron total carbon (TC) concentrations decreased by about 20 times. In contrast, the concentration of supermicron TC was fairly constant throughout the experiment, pointing to a constant emission of coarse particles from the natural background. About 6–8% of TC (9–11% of WSOC) was speciated at the molecular level by GC-MS and liquid chromatography. Polyhydroxylated compounds, aliphatic and aromatic acids were the main classes of compounds accounted for by individual compound analysis. Functional group analysis by proton NMR and chromatographic separation on ion-exchange columns allowed characterization of ca. 50–90% of WSOC into broad chemical classes (neutral species/light acids/humic-like substances). In spite of the significant change in the chemical composition of tracer compounds from the dry to the wet period, the functional groups and the general chemical classes of WSOC changed only to a small extent. Model compounds representing size-resolved WSOC chemical composition for the different periods of the campaign are then proposed in this paper, based on the chemical characterization by both individual compound analysis and functional group analysis deployed during the LBA-SMOCC experiment. Model compounds reproduce quantitatively the average chemical structure of WSOC and can be used as best-guess surrogates in microphysical models involving organic aerosol particles over tropical areas affected by biomass burning.


2017 ◽  
Vol 19 (1) ◽  
pp. 17
Author(s):  
Rodiah Nurbaya Sari ◽  
Nanda Saridewi ◽  
Shofwatunnisa Shofwatunnisa

Biosynthesis and characterization of ZnO Nanoparticles by the reduction method have been performed. This study aims to determine the ability of Caulerpa sp. as a reducing agent and stabilizer. Extract Caulerpa sp. was reacted with Zn(CH3COO)2.2H2O solution in variation concentration of 0.05, 0.1, and 0.15 M and the pH of the solution was conditioned with NaOH 0.1 M added became 7, 8, 9. Characterization of ZnO nanoparticles was performed for functional group analysis (FTIR), surface morphology and particle distribution (SEM), knowing the phase type (XRD), and particle size and particle size (PSA). The result of phase analysis by XRD shows that the synthesis of ZnO nanoparticles using green seaweed extract Caulerpa sp. has been successfully performed with the formation of the optimum ZnO nanoparticles 0.15 M at pH 8. The ZnO nanoparticles had a relatively similar particle size distribution with an average particle size of 370.72 nm. Based on FTIR results it was known that the compound suspected to act as a bioreductor and stabilizer agent in the synthesis of ZnO nanoparticles was a protein


Author(s):  
Gracia Ramadhani Putri

The increasing use of plastics in everyday life results in environmental pollution. Synthetic plastic isdifficult to be degraded in nature, so we need the main material for making environmentally friendlyplastics. This research was conducted to synthesize seaweed-based biodegradable plastic (Eucheumacottonii) mixed with cassava starch and polysaccharides derived from various tropical fruit seeds thatare widely available in Indonesia such as avocado and durian with a composition ratio of 3:8:1.Characterization carried out included functional group analysis with FTIR, mechanical properties(tensile strength) and biodegradability.


2005 ◽  
Vol 5 (4) ◽  
pp. 5687-5749 ◽  
Author(s):  
S. Decesari ◽  
S. Fuzzi ◽  
M. C. Facchini ◽  
M. Mircea ◽  
L. Emblico ◽  
...  

Abstract. The chemical composition of carbonaceous aerosols collected during the LBA-SMOCC field experiment, conducted in Rondônia, Brazil, in 2002 during the transition from the dry to the wet season, was investigated by a suite of advanced analytical techniques. The period of most intense biomass burning was characterized by high concentrations of submicron particles rich in carbonaceous material and water-soluble organic compounds (WSOC). At the onset of the rainy period, submicron total carbon (TC) concentrations had decreased by about 20 times. In contrast, the concentration of supermicron TC was fairly constant throughout the experiment, pointing to a constant emission of coarse particles from the natural background. About 6–8% of TC (9–11% of WSOC) was speciated at the molecular level by GC-MS and liquid chromatography. Poly-hydroxylated compounds, aliphatic and aromatic acids were the main classes of compounds accounted for by individual compound analysis. Functional group analysis by proton NMR and chromatographic separation on ion-exchange columns allowed characterization of ca. 50–90% of WSOC into broad chemical classes (neutral species/light acids/humic-like substances). In spite of the significant change in the chemical composition of tracer compounds from the dry to the wet period, the functional groups and the general chemical classes of WSOC changed only to a lesser extent. Model compounds representing size-resolved WSOC chemical composition for the different periods of the campaign are then proposed in this paper, based on the chemical characterization by both individual compound analysis and functional group analysis deployed during the LBA-SMOCC experiment. Model compounds reproduce quantitatively the average chemical structure of WSOC and can be used as best-guess surrogates in microphysical models involving organic aerosol particles over tropical areas affected by biomass burning.


2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Maria Ulfah ◽  
Sri Aprilia ◽  
Fauzi M. Djuned

<p>Utilization of wood powder is one of the alternative in waste wood prevention which has not been optimally utilized. Utilization of bionanofiller based on wood waste such as wood powder can also reduce dependence on raw materials such as silica, clay, bentonite, zeolite which diminished its existence. The sample used in this study is Meranti wood powder which is then prepared and characterized. The characterization of bionanofiller waste of Meranti wood powder is done by analyzing particle density, XRD, SEM, and FTIR. Particle density analysis showed Meranti wood powder having density of 0,044 gr/cm . XRD analysis shows that the maximum peak at an angle of 2θ = 22,2o 3 indicates the presence of carbon phase. The results of SEM analysis of Meranti wood powder are suitable for use as fillers because they are 1 μm in size. The result of functional group analysis shows the presence of functional groups -OH, -CH3, -CH2, C = C, C-H and C-O.</p>


2019 ◽  
Vol 2 (2) ◽  
pp. 66-73
Author(s):  
Abdul Rahim ◽  
Rustam Musta

Research on Biodegradable Plastic Characterization of Cassava Wastes (manihot esculenta) Substitution of Tapioca Flour. As Biodegradable Plastics Base Material. This study aims to determine the ratio of cassava starch to tapioca starch which produces the best biodegradable plastic which is then used for testing the physical and mechanical properties of biodegradable plastic film using 5% acetic acid. Comparison of cassava starch with tapioca flour used is 1 : 1; 1 : 1,5; 1 : 2; 1 : 2,5; 1 : 3. The best plastics are obtained by comparison of cassava starch with tapioca flour is 1 : 3. The characteristics of biodegradable plastics include physical characteristics consisting of thickness with value 0,273 mm, 0,286 mm, 0,413 mm, 0,280 mm, dan 0,510 mm. While the mechanical characteristics consist of tensile strength with value 0,22138 MPa, 2,10724 MPa, 0,78896 MPa, 3,25933 Mpa, dan 0,508 Mpa. Percent lengthening with value 42%, 32,8%, 55,6%, 20%, dan 31,6%. Based on the result of research, it can be concluded that the value of thickness, percent elongation, and tensile strength are influenced by the comparative formula used.Keywords:  Biodegradable plastic, physical properties, mechanics, cassava starch, tapioca flour


2020 ◽  
Vol 15 (1) ◽  
pp. 45-52
Author(s):  
Lia Ernita ◽  
Medyan Riza ◽  
Syaubari Syaubari

The performance and characterization of biodegradable plastic from tapioca starch was studied. Modified the chitosan was one of the ingredients for produce  the biodegradable plastics. The produced biodegradable polastic were thin sheet plastic, elastic and transparent. The biodegradable plastic performance had tensile strength between 2,26-3.73 Mpa, elongation ranges from 17.24 to 76.76%, and water absorption ranges from 30.81-268.9%. In antioxidant analyze, apples are wrapped in plastic and had significant mechanical properties changes on 8th day.Morphology scanning result showed that in the chitosan-polyNIPAM there were no cavities may caused high hydrophilicity in the biodegradable plastic.


2018 ◽  
Vol 21 ◽  
pp. 31-42 ◽  
Author(s):  
Mohammad Bellal Hoque ◽  
M. Sahadat Hossain ◽  
Abdul M. Nahid ◽  
Solaiman Bari ◽  
Ruhul A. Khan

Pineapple Leaf Fiber (PALF)-reinforced polypropylene (PP) based composites were prepared successfully by conventional compression molding technique. Different percentages (25,30,35, 40 and 405% by weight) of fiber were used to prepare composites. Tensile Strength (TS), Tensile Modulus (TM), Elongation at Break (Eb %), Bending Strength (BS), Bending Modulus (BM) and Impact Strength (IS) were evaluated. The 45 wt% PALF/PP composite exhibited an increase of 132% TS, 412% TM, 155% BS, 265% BM, and 140% IS with respect to the matrix material (PP). Fourier Transform Infrared (FTIR) Spectroscopy was employed for functional group analysis of PALF/PP composites. For all percentages of fiber, the composites demonstrated lower water uptake. The fabricated composites were immersed in alkali solution (Sodium hydroxide solution, 3%, 5% and 7% by weight) for 60 min and showed low TS, TM and Eb% compared to control composites.


Sign in / Sign up

Export Citation Format

Share Document