scholarly journals Corrosion Behavior of Two cp Titanium Dental Implants Connected by Cobalt Chromium Metal Superstructure in Artificial Saliva and the Influence of Immersion Time

Author(s):  
Ala’a AlOtaibi ◽  
2011 ◽  
Vol 37 (3) ◽  
pp. 309-317 ◽  
Author(s):  
Eman M Anwar ◽  
Lamia S Kheiralla ◽  
Riham H Tammam

Abstract The effect of fluoride ion concentration on the corrosion behavior of Ti and Ti6Al4V implant alloys, when coupled with either metal/ceramic or all-ceramic superstructure, was examined by different electrochemical methods in artificial saliva solutions. It was concluded that increased fluoride concentration leads to a decrease in the corrosion resistance of all tested couples. The type of the superstructure also showed a significant effect on the corrosion resistance of the couple.


2009 ◽  
Vol 12 (3) ◽  
pp. 363-366 ◽  
Author(s):  
Norma Terumi Kadowaki ◽  
Gustavo Aristides Santana Martinez ◽  
Alain Robin

Coatings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 836
Author(s):  
Agnieszka Ossowska ◽  
Andrzej Zieliński

Titanium dental implants show very good properties, unfortunately there are still issues regarding material wear due to corrosion, implant loosening, as well as biological factors—allergic reactions and inflammation leading to rejection of the implanted material. In order to avoid performing reimplantation operations, changes in the chemical composition and/or modifications of the surface layer of the materials are used. This research is aimed at explaining the possible mechanisms of titanium dissolution and the role of oxide coating, and its damage, in the enhancement of the corrosion process. The studies of new and used implants were made by scanning electron microscopy and computer tomography. The long-term chemical dissolution of rutile was studied in Ringer’s solution and artificial saliva at various pH levels and room temperature. Inductively coupled plasma mass spectrometry (ICP-MS) conjugated plasma ion spectrometry was used to determine the number of dissolved titanium ions in the solutions. The obtained results demonstrated the extremely low dissolution rate of rutile, slightly increasing along with pH. The diffusion calculations showed that the diffusion of titanium through the oxide layer at human body temperature is negligible. The obtained results indicate that the surface damage followed by titanium dissolution is initiated at the defects caused by either the manufacturing process or implantation surgery. At a low thickness of titanium oxide coating, there is a stepwise appearance and development of cracks that forms corrosion tunnels within the oxide coating.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1272
Author(s):  
Júlio C. M. Souza ◽  
Karin Apaza-Bedoya ◽  
Cesar A. M. Benfatti ◽  
Filipe S. Silva ◽  
Bruno Henriques

The main aim of this work was to perform a comprehensive review of findings reported by previous studies on the corrosion of titanium dental implants and consequent clinical detrimental effects to the patients. Most studies were performed by in vitro electrochemical tests and complemented with microscopic techniques to evaluate the corrosion behavior of the protective passive oxide film layer, namely TiO2. Results revealed that bacterial accumulation, dietary, inflammation, infection, and therapeutic solutions decrease the pH of the oral environment leading to the corrosion of titanium. Some therapeutic products used as mouthwash negatively affect the corrosion behavior of the titanium oxide film and promote changes on the implant surface. In addition, toothpaste and bleaching agents, can amplify the chemical reactivity of titanium since fluor ions interacting with the titanium oxide film. Furthermore, the number of in vivo studies is limited although corrosion signs have been found in retrieved implants. Histological evaluation revealed titanium macro- and micro-scale particles on the peri-implant tissues. As a consequence, progressive damage of the dental implants and the evolution of inflammatory reactions depend on the size, chemical composition, and concentration of submicron- and nanoparticles in the surrounding tissues and internalized by the cells. In fact, the damage of the implant surfaces results in the loss of material that compromises the implant surfaces, implant-abutment connections, and the interaction with soft tissues. The corrosion can be an initial trigger point for the development of biological or mechanical failures in dental implants.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1167
Author(s):  
Cristina Garcia-Cabezón ◽  
María Luz Rodriguez-Mendez ◽  
Vicente Amigo Borrás ◽  
Bayon Raquel ◽  
Jose Carlos Rodriguez Cabello ◽  
...  

Ti-6Al-4V alloy obtained by powder metallurgy (PM) is a good candidate biomaterial in the manufacture of dental implants but its inherent porosity makes it have worse corrosion behavior than conventionally obtained alloys. In order to improve the corrosion and biological properties, surface modification technologies could be used. The plasma electrolytic oxidation (PEO) process is a novelty process successfully used in case of conventional titanium alloys. The present work investigates the effect of PEO treatment on PM Ti-6Al-4V alloy using two electrolytes. Both coatings show good adherence and improved corrosion behavior in artificial saliva, the PEO coatings delivers a steady growth of corrosion resistance from day one until 90 days immersion. Highest corrosion resistance was shown in case of Ca/P enrichment PEO coatings. The cytocompatibility tests indicated these coatings seem to be appropriate to improve the bone osseointegration with proper porosity index.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4635
Author(s):  
Farah Bechir ◽  
Simona Maria Bataga ◽  
Elena Ungureanu ◽  
Diana Maria Vranceanu ◽  
Mariana Pacurar ◽  
...  

Cobalt-chromium (Co-Cr) alloys are widely utilized in dentistry. The salivary pH is a significant factor, which affects the characteristics and the behavior of dental alloys through corrosion. This study aimed to evaluate the corrosion behavior in artificial saliva with different pH values (3, 5.7, and 7.6) of two commercial Co-Cr dental alloys manufactured by casting and by milling. Corrosion resistance was determined by the polarization resistance technique, and the tests were carried out at 37 ± 1 °C, in Carter Brugirard artificial saliva. After the electrochemical parameters, it can be stated that the cast Co-Cr alloy has the lowest corrosion current density, the highest polarization resistance, and the lowest speed of corrosion in artificial saliva with pH = 7.6. In the case of milled Co-Cr alloy, the same behavior was observed, but in artificial saliva with pH = 5.7, it recorded the most electropositive values of open circuit potential and corrosion potential. Although both cast and milled Co-Cr alloys presented a poorer corrosion resistance in artificial saliva with a more acidic pH value, the milled Co-Cr alloy had better corrosion behavior, making this alloy a better option for the prosthetic treatment of patients suffering from GERD.


1999 ◽  
Vol 8 (3) ◽  
pp. 295-302 ◽  
Author(s):  
Guaracilei Maciel Vidigal ◽  
Liane Cassol Argenta Aragones ◽  
Aguinaldo Campos ◽  
Mario Groisman

Author(s):  
David Soto-Peñaloza ◽  
José Javier Martín-de-Llano ◽  
Carmen Carda-Batalla ◽  
Miguel Peñarrocha-Diago ◽  
David Peñarrocha-Oltra

2005 ◽  
Vol 34 (6) ◽  
pp. 776-777 ◽  
Author(s):  
Motohiro Uo ◽  
Kiyotaka Asakura ◽  
Atsuro Yokoyama ◽  
Kazuchika Tamura ◽  
Yasunori Totsuka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document