Learning from the Eco-Toxicology of Fire-Fighting Foams in Aquatic Organisms: Altered Eco-Toxicity of Sodium Alkyl Sulfonates on Green Paramecia and Medaka Fish Maintained in Different Waters

2015 ◽  
Vol 10 (4) ◽  
pp. 604-612 ◽  
Author(s):  
Kaishi Goto ◽  
◽  
Hiroshi Takaichi ◽  
Tomonori Kawano ◽  
◽  
...  

A variety of ciliated and flagellated protozoan species have been used as bio-indicators of the eco-toxic impacts of polluting chemicals, especially in aquatic environments such as rivers, ponds, lakes, and wetlands. To date, both the short-term and long-term impacts of fire-fighting foams (FFFs) in aquatic (freshwater environment) and semi-aquatic (wetland) ecosystems have been assessed in laboratory-scale model assays and in biotope-based assays. Little attention has been given to the fact that water qualities, such as hardness, drastically alter the toxic actions of various chemicals against living aquatic organisms including fishes, algae, and other microbes, suggesting that the laboratory water often employed in toxicity assays for fishes and microorganisms might not reflect the actual impact of chemicals in the ecosystem. Therefore, for examining the toxicity of certain chemicals (chiefly detergent-based and soap-based FFFs) in aquatic organisms, we have previously proposed that a series of simple eco-toxicity tests using natural waters sampled from the natural organism’s habitats or blends of mineralcontaining water preparations mimicking the natural habitat waters be used in addition to tests in standard laboratory waters. Based on the knowledge of the eco-toxicity of FFFs obtained through past studies using model aquatic organisms such as green paramecia (Paramecium bursaria), we conducted a study aiming to uncover the toxic mechanism of sodium alkyl sulfonates, a series of synthetic detergents known as SAS, using a strain ofP. bursariaoriginally sampled from a river, both in laboratory water and habitat river water (river water from whereP. bursariawas collected; HRW). Here, we employedP. bursariamaintained in both a natural HRW-based assay medium and an ultrapure water-based low-mineral standard culturing medium for comparing the apparent toxicity of SAS. Data strongly suggested that the toxicities of most SAS detergents (alkyl chains shorter than 9 carbons or longer than 14 carbons) are minimized in the mineral-rich HRW compared to the commonly used UPW-based low-mineral ciliateculturing conditions. The toxicity of SAS members with moderate chain lengths, such as sodium dodecan sulfonate, tended to be minimized with elevated mineral content. A similar tendency was also observed in medaka fish, a tiny model fish.

2013 ◽  
Vol 1 (1) ◽  
pp. 52 ◽  
Author(s):  
Melky R Pattiwael ◽  
Remy E. P Mangindaan ◽  
Rudi Prabowo ◽  
Inneke F. M Rumengan

Cyanide (CN) through leaching process in the gold processing could produce tailings that have negative impacts on the aquatic environment. To determine the acute and chronic effects of cyanide on aquatic organisms, toxicity tests have been conducted in the laboratory using Daphnia sp.This zooplankton organism is recommended by APHA as standard test animals. In this study the test concentrations refer to the Ministerial Decree No. 202 of 2004 and Government Regulation No. 82 of 2001. Cyanide was analyzed as free CN and WADS CN. The result of acute toxicity test using cyanide solution showed that Daphnia could survive a maximum concentration of 0.2 ppm. LC50 values for 24 and 72 hours were 0,59 mg/L and 0,10 mg/l, respectively. The LT50 was found at 42 hours. Daphnia sp. produced different numbers of offspring at different CN concentrations, and changed their reproduction pattern from parthenogenesis to sexual reproduction after exposure to a cyanide concentration of 0.1 ppm for 24 hours©  Sianida (CN) melalui proses leaching dalam proses pengolahan emas menghasilkan limbah yang dapat memberi dampak negatif bagi lingkungan perairan. Untuk mengetahui sampai seberapa jauh CN dapat memberi efek akut dan kronis terhadap biota air, telah dilakukan uji toksisitas di laboratorium dengan menggunakan Daphnia sp. Zooplankton ini direkomendasikan oleh APHA sebagai salah satu hewan uji standar. Dalam penelitian ini konsentrasi uji yang dipakai mengacu pada peraturan yang berlaku, yaitu Keputusan Menteri No. 202, Tahun 2004, dan Peraturan Pemerintah No. 82, Tahun 2001. Analisis sianida yang dihitung adalah nilai free CN dan WADS CN. Hasil penelitian uji toksisitas akut dengan menggunakan larutan sianida didapati Daphnia mampu bertahan hidup sampai pada konsentrasi 0,2 ppm dan nilai LC50 berada pada konsentarsi 0,1 ppm serta LT50 pada jam ke 42. Hasil uji efek kronis, Daphnia sp. menghasilkan jumlah anakan yang berbeda pada konsentrasi CN yang berlainan, dan mengalami perubahan pola reproduksi dari partenogenesis menjadi seksual setelah dipaparkan pada kosentrasi sianida 0,1 ppm selama 24 jam©


2017 ◽  
Vol 68 (8) ◽  
pp. 1711-1715
Author(s):  
Stefania Gheorghe ◽  
Gabriela Geanina Vasile ◽  
Cristina Gligor ◽  
Irina Eugenia Lucaciu ◽  
Mihai Nita Lazar

Metallic elements copper (Cu), zinc (Zn), nickel (Ni) and manganese (Mn) are some of the most commonly found in water and sediment samples collected from the Danube - Danube Delta. These elements are important as essential micronutrients, being normally present at low concentrations in biological organisms, but in high concentrations they become toxic with immediate and delayed effects. The role of this metals is still controversial, that�s why bioconcentration potential is so important. In this non-clinical study, we tested in vitro effect of heavy metals on carp, Cyprinus carpio, reproducing in vivo presence of Cu, Zn, Ni and Mn in the Romanian�s surface water. The toxicity tests were performed according to OECD 203 by detecting the average (50%) lethal concentration - LC50 on aquatic organisms (freshwater fish) at 96h. The results pointed out that, copper value for LC 50 at 96h was estimated as 3.4 mg/L (concentrations tested in the range of 0.1 - 4.75 mg/L). Zinc value for LC 50 at 96h was estimated as 20.8 mg/L (concentrations tested in the range of 0.028 � 29.6 mg/L). Nickel value for LC 50 at 96h was estimated as 40.1 mg/L (concentrations tested in the range of 0.008 - 84.5 mg/L). For manganese the mortality effects has recorded at LC 50 at 96h at estimated value higher than 53 mg/L (concentrations tested in the range of 0.04 - 53.9 mg/L). The accuracy of the testing metals concentration was insured by the screening of the dilution water, as well as food and control fish, acclimated in laboratory conditions.


Author(s):  
John M Besser ◽  
Chris D Ivey ◽  
Jeffery A Steevens ◽  
Danielle Cleveland ◽  
David Soucek ◽  
...  

Author(s):  
Torsten Källqvist ◽  
Merete Grung ◽  
Katrine Borgå ◽  
Hubert Dirven ◽  
Ole Martin Eklo ◽  
...  

The plant protection product Malakite (BAS 669 01 F), containing the active substances dithianon and pyrimethanil, is a fungicide against scab in pome fruits. Products containing these active plant protection substances are approved in Norway, but not with both substances in the same product. The Swedish Chemicals Agency (KemI) has as zonal Rapporteur Member State (zRMS) of the Northern Zone evaluated the product Malakite and decided on non-approval due to the observation of unacceptable effects in exposed birds, aquatic organisms, non-target arthropods and earthworms. On request from The Norwegian Food Safety Authority, the VKM Panel on Plant Protection Products has discussed the available data and the report prepared by KemI, and has concluded as follows on the questions raised: On the refinement of DT50 in long term risk assessment for birds: It is the view of the VKM panel that the refinement is not acceptable because the analysis using first order kinetics seems not in line with a realistic and sufficiently conservative approach for the data provided. Furthermore, field studies from more sites are required. On the long term cumulative effects of the active substances on birds: VKM shares the view of KemI, that the combined sub-lethal and reproduction effects should be assessed because the mode of action of the two ingredients has only been shown in fungi, and since the mechanisms in birds could be different. On the reduction of assessment factor for fish: VKM opposes to the reduction of assessment factor for dithianon in fish because the data from acute toxicity tests cannot be extrapolated to chronic toxicity, and because the factor should reflect not only the variation in interspecies sensitivity, but also the uncertainty involved in extrapolation from laboratory tests to the field situation. On the choice of end point in risk assessment for fish: The VKM panel considers the NOEC of dithianon for fish determined from the study at pH 7.9 not to be adequate for the more acidic Norwegian surface waters, and recommends using the data from the test performed at pH 6.5. On the formulation studies for aquatic organisms: It is the opinion of the VKM panel that the formulation studies may be used together with corresponding studies with the active ingredients as long as the studies compared are performed and evaluated according to the same principles. However, VKM notes that the formulation tests as well as the tests of the active ingredients have been performed at high pH values, which are not representative to most Norwegian surface waters. Thus, the toxic effect of dithianon shown in these tests are likely to be lower than expected under typical conditions in Norway. On the assessment factors for concentration addition in fish: It is the opinion of the VKM panel that a reduction in assessment factor for one component in a mixture cannot be used for a formulation containing components for which a similar reduction has not been accepted. On effect studies of active substances and formulations on non-target arthropods: The VKM panel shares the view of KemI that the risk assessment should be based on all available information, including the studies presented for the active substances. On the endpoint in earthworm risk assessment: VKM supports the view of KemI that the observed effects of pyrimethanil on reproduction of earthworms should be considered in the risk assessment of Malakite.


1918 ◽  
Vol 11 (1-10) ◽  
pp. 557-571
Author(s):  
Morris Wells

Carbon monoxide and carbon dioxide are both present in the waste that is diverted into natural waters by many works where illuminating gas is manufactured and, since the waste as a whole is known to be exceedingly poisonous to aquatic organisms, the role played in its toxic action by the two gases in question was investigated at the time that the many other organic substances of which the waste is composed were studied by Shelford. The investigation has shown that both of the gases are poisonous to fresh-water fishes even when present in the water in relatively small proportions, but the monoxide has been found to be by far the more deadly of the two.


2002 ◽  
Vol 68 (3) ◽  
pp. 1122-1131 ◽  
Author(s):  
Lester W. Sinton ◽  
Carollyn H. Hall ◽  
Philippa A. Lynch ◽  
Robert J. Davies-Colley

ABSTRACT Sunlight inactivation in fresh (river) water of fecal coliforms, enterococci, Escherichia coli, somatic coliphages, and F-RNA phages from waste stabilization pond (WSP) effluent was compared. Ten experiments were conducted outdoors in 300-liter chambers, held at 14°C (mean river water temperature). Sunlight inactivation (k S) rates, as a function of cumulative global solar radiation (insolation), were all more than 10 times higher than the corresponding dark inactivation (k D) rates in enclosed (control) chambers. The overall k S ranking (from greatest to least inactivation) was as follows: enterococci > fecal coliforms ≥ E. coli > somatic coliphages > F-RNA phages. In winter, fecal coliform and enterococci inactivation rates were similar but, in summer, enterococci were inactivated far more rapidly. In four experiments that included freshwater-raw sewage mixtures, enterococci survived longer than fecal coliforms (a pattern opposite to that observed with the WSP effluent), but there was little difference in phage inactivation between effluents. In two experiments which included simulated estuarine water and seawater, sunlight inactivation of all of the indicators increased with increasing salinity. Inactivation rates in freshwater, as seen under different optical filters, decreased with the increase in the spectral cutoff (50% light transmission) wavelength. The enterococci and F-RNA phages were inactivated by a wide range of wavelengths, suggesting photooxidative damage. Inactivation of fecal coliforms and somatic coliphages was mainly by shorter (UV-B) wavelengths, a result consistent with photobiological damage. Fecal coliform repair mechanisms appear to be activated in WSPs, and the surviving cells exhibit greater sunlight resistance in natural waters than those from raw sewage. In contrast, enterococci appear to suffer photooxidative damage in WSPs, rendering them susceptible to further photooxidative damage after discharge. This suggests that they are unsuitable as indicators of WSP effluent discharges to natural waters. Although somatic coliphages are more sunlight resistant than the other indicators in seawater, F-RNA phages are the most resistant in freshwater, where they may thus better represent enteric virus survival.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Milton S. Love ◽  
Mary M. Nishimoto ◽  
Linda Snook ◽  
Donna M. Schroeder ◽  
Ann Scarborough Bull

Increasing reliance on deep-water renewable energy has increased concerns about the effects of the electromagnetic fields (EMFs) generated by submarine power cables on aquatic organisms. Off southern California, we conducted surveys of marine organisms living around energized and unenergized submarine power cables and nearby sea floor during 2012–2014 at depths between 76 and 213 m. In general, EMFs declined to background levels about one meter from the cable. We found no statistical difference in species composition between the fish assemblages along the energized and unenergized cables. The natural habitat community statistically differed from both energized and unenergized cable communities. Within species (or species groups), we found no differences in densities between energized and unenergized cables. Total fish densities were significantly higher around the cables than over the natural habitat. We found that invertebrate communities were structured by habitat type and depth and, similar to the fishes, there was no statistical difference between the energized and unenergized cables. Individually, the densities of four invertebrate species or species groups (Metridium farcimen, Luidia spp., unidentified black Crinoidea, and Urticina spp.) differed between energized and unenergized cables, but this difference was not significant across all depth strata. The invertebrate community inhabiting the natural habitat strongly differed from the energized and unenergized cable community exhibiting the fewest species and individuals.


2020 ◽  
Vol 36 (7) ◽  
pp. 467-476
Author(s):  
Halis Boran

Metal-based nanoparticles (NPs) can release metal ions that are toxic to aquatic organisms; however, whether the toxicity is from metal ions rather than unique “nano-scale” effects of the NPs is unresolved. The present study aimed to compare the toxicity of Cu2+ and Cu-NPs in larval zebrafish ( Danio rerio) to clarify whether toxic effects are attributable to release of Cu ions and to determine the effect of the chelating agent ethylenediaminetetraacetic acid (EDTA) and calcium hardness (as CaCO3) on the Cu toxicity. First, the acute toxicity (96-h lethality) of Cu-NPs was determined in comparison to aqueous Cu in larvae exposed to CuSO4, and subsequently, sublethal tests with Cu-NPs and CuSO4 were conducted with additions of EDTA or calcium ions to evaluate alterations in expression of metallothionein-2 ( MT2) gene transcripts (quantitative real-time polymerase chain reaction). Acute toxicity of Cu in larvae exposed to CuSO4 was greater (LC50 = 226 µg Cu/L) than for larvae exposed to Cu-NPs (LC50 = 648 µg Cu/L). The expression of MT2 increased with Cu concentration ( p < 0.05), and the slope of the linear regression was significantly greater in fish exposed to CuSO4 (slope = 0.090) compared to Cu-NPs (slope = 0.011). Cu2+ was 2.9-fold more toxic than Cu-NPs. The presence of 5 mg/L EDTA and 220 mg/L CaCO3 significantly reduced the expression of MT2 (1.8-fold for EDTA, 2.3-fold for CaCO3) in larvae exposed to CuSO4. For larvae exposed to Cu-NPs, the presence of EDTA reduced the expression of MT2 (1.7-fold) relative to Cu-NP concentration. While Cu-NPs induced MT2 expression, the differences in concentration relationships of MT2 expression between Cu-NPs and CuSO4 indicated that factors other than release of Cu ions from Cu-NPs influenced acute toxicity of Cu-NPs. The conclusion drawn from this ecotoxicological risk assessment was that EDTA and calcium significantly decreased Cu toxicity in freshwater fish.


2020 ◽  
Vol 39 (10) ◽  
pp. 1861-1883
Author(s):  
Joseph S. Meyer ◽  
Tara Lyons‐Darden ◽  
Emily R. Garman ◽  
Elizabeth T. Middleton ◽  
Christian E. Schlekat

Antibiotics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 564 ◽  
Author(s):  
Maciej Żaczek ◽  
Beata Weber-Dąbrowska ◽  
Andrzej Górski

Facing antibiotic resistance has provoked a continuously growing focus on phage therapy. Although the greatest emphasis has always been placed on phage treatment in humans, behind phage application lies a complex approach that can be usefully adopted by the food industry, from hatcheries and croplands to ready-to-eat products. Such diverse businesses require an efficient method for combating highly pathogenic bacteria since antibiotic resistance concerns every aspect of human life. Despite the vast abundance of phages on Earth, the aquatic environment has been considered their most natural habitat. Water favors multidirectional Brownian motion and increases the possibility of contact between phage particles and their bacterial hosts. As the global production of aquatic organisms has rapidly grown over the past decades, phage treatment of bacterial infections seems to be an obvious and promising solution in this market sector. Pathogenic bacteria, such as Aeromonas and Vibrio, have already proved to be responsible for mass mortalities in aquatic systems, resulting in economic losses. The main objective of this work is to summarize, from a scientific and industry perspective, the recent data regarding phage application in the form of targeted probiotics and therapeutic agents in aquaculture niches.


Sign in / Sign up

Export Citation Format

Share Document