scholarly journals Automatic MRI Brain Tumor Segmentation Techniques: A Survey

Author(s):  
Otman Basir ◽  
Kalifa Shantta

Image segmentation plays a crucial role in recognizing image signification for checking and mining medical image records. Brain tumor segmentation is a complicated assignment in medical image analysis. It is challenging to identify precisely and extract that a portion of the image has abnormal tissues for further diagnosis and analysis. The method of segmenting a tumor from a brain MRI image is a highly concentrated medical science community field, as MRI is non-invasive. In this survey, brain MRI images' latest brain tumor segmentation techniques are addressed a thoroughgoing literature review. Besides, surveys the several approved techniques regularly applied for brain tumor MRI segmentation. Also, highlighting variances among them and reviews their abilities, pros, and weaknesses. Various approaches to image segmentation are described and explicated with the modern participation of several investigators.

2021 ◽  
Vol 7 (2) ◽  
pp. 19
Author(s):  
Tirivangani Magadza ◽  
Serestina Viriri

Quantitative analysis of the brain tumors provides valuable information for understanding the tumor characteristics and treatment planning better. The accurate segmentation of lesions requires more than one image modalities with varying contrasts. As a result, manual segmentation, which is arguably the most accurate segmentation method, would be impractical for more extensive studies. Deep learning has recently emerged as a solution for quantitative analysis due to its record-shattering performance. However, medical image analysis has its unique challenges. This paper presents a review of state-of-the-art deep learning methods for brain tumor segmentation, clearly highlighting their building blocks and various strategies. We end with a critical discussion of open challenges in medical image analysis.


2021 ◽  
Author(s):  
Shidong Li ◽  
Jianwei Liu ◽  
Zhanjie Song

Abstract Since magnetic resonance imaging (MRI) has superior soft tissue contrast, contouring (brain) tumor accurately by MRI images is essential in medical image processing. Segmenting tumor accurately is immensely challenging, since tumor and normal tissues are often inextricably intertwined in the brain. It is also extremely time consuming manually. Late deep learning techniques start to show reasonable success in brain tumor segmentation automatically. The purpose of this study is to develop a new region-ofinterest-aided (ROI-aided) deep learning technique for automatic brain tumor MRI segmentation. The method consists of two major steps. Step one is to use a 2D network with U-Net architecture to localize the tumor ROI, which is to reduce the impact of normal tissue’s disturbance. Then a 3D U-Net is performed in step 2 for tumor segmentation within identified ROI. The proposed method is validated on MICCAI BraTS 2015 Challenge with 220 high Gliomas grade (HGG) and 54 low Gliomas grade (LGG) patients’ data. The Dice similarity coefficient and the Hausdorff distance between the manual tumor contour and that segmented by the proposed method are 0.876 ±0.068 and 3.594±1.347 mm, respectively. These numbers are indications that our proposed method is an effective ROI-aided deep learning strategy for brain MRI tumor segmentation, and a valid and useful tool in medical image processing.


Author(s):  
Sanjay Saxena ◽  
Puspanjali Mohapatra ◽  
Swati Pattnaik

Automated segmentation of tumorous region from the brain magnetic resonance image (MRI) is the procedure of extrication anomalous tissues from regular tissues, such as white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). The process of accurate and efficient segmentation is still exigent because of the diversity of location, size, and shape of the tumorous region. Brain MRI provides metabolic process, psychological process, and descriptive information of the brain. Brain tumor segmentation using MRI is drawing the attention of the researchers due to its non-invasive nature and good soft tissue contrast of MRI sequences. The main motive of this chapter is to provide a broad overview of the methods of brain tumor segmentation based on MRI. This chapter provides the information of the brain tumor, its types, brief introduction of the MRI, and its diverse types, and lastly, this chapter gives the brief overview with benefits and limitations about diverse techniques used for brain tumor segmentation by different researchers and scientists.


2014 ◽  
Vol 3 (3) ◽  
pp. 72-85 ◽  
Author(s):  
A. Jayachandran ◽  
R. Dhanasekaran

Brain tumor segmentation is an significant method in medical image analysis since it provides an information related to anatomical structures as well as possible anomalous tissues necessary to treatment planning and patient follow-up. In this paper, fuly automatic brain tumor segmentation scheme is presented, which focuses on the structural analysis on both tumorous and normal tissues. Our proposed method consists of three major steps: i) tumor region location ii) feature extraction using wavelet iii) feature reduction using principe component analysis and iii) classification using Ada-Boost classifier . The experimental results are validated using the evaluation metrics such as, sensitivity, specificity, and accuracy. The authors proposed system is compared to other neural network classifier such as Feed Forward Neural Network(FFNN) and Radial Basics Function (RBF). The classification accuracy of the proposed system results is better compared to other leading methods.


Author(s):  
Samah Abdelaziz ◽  
Songfeng Lu

<p>Brain is a complicated structure consisting of millions of millions cells so that, it’s difficult to identify any diseases without using any computerized technology. Magnetic resonance imaging (mri) is one of the main assessments of brain tumors. One of the most important steps on medical image processing is segmentation. Segmenting brain mri images, which provide accurate information for the diagnosis and therapy decisions of brain tumors. We proposed to segment brain tumor mri images into three parts (wm (white matter), gm (gray matter), and background). The first algorithm is for applying median filtering on brain mri image for removing the noise from the image for achieving accurate results. The second algorithm is for applying k-means algorithm for accuracy in time consuming and for clustering into regions and  the third algorithm indicate the detecting the boundary of the image with the use of level set. By comparison, our proposed method, its efficiency to segment perfectly more than other previous used algorithms especially on time consuming.</p>


2019 ◽  
Author(s):  
Ali Hatamizadeh ◽  
Demetri Terzopoulos ◽  
Andriy Myronenko

AbstractFully convolutional neural networks (CNNs) have proven to be effective at representing and classifying textural information, thus transforming image intensity into output class masks that achieve semantic image segmentation. In medical image analysis, however, expert manual segmentation often relies on the boundaries of anatomical structures of interest. We propose boundary aware CNNs for medical image segmentation. Our networks are designed to account for organ boundary information, both by providing a special network edge branch and edge-aware loss terms, and they are trainable end-to-end. We validate their effectiveness on the task of brain tumor segmentation using the BraTS 2018 dataset. Our experiments reveal that our approach yields more accurate segmentation results, which makes it promising for more extensive application to medical image segmentation.


Author(s):  
Ghazanfar Latif ◽  
Jaafar Alghazo ◽  
Fadi N. Sibai ◽  
D.N.F. Awang Iskandar ◽  
Adil H. Khan

Background: Variations of image segmentation techniques, particularly those used for Brain MRI segmentation, vary in complexity from basic standard Fuzzy C-means (FCM) to more complex and enhanced FCM techniques. Objective: In this paper, a comprehensive review is presented on all thirteen variations of FCM segmentation techniques. In the review process, the concentration is on the use of FCM segmentation techniques for brain tumors. Brain tumor segmentation is a vital step in the process of automatically diagnosing brain tumors. Unlike segmentation of other types of images, brain tumor segmentation is a very challenging task due to the variations in brain anatomy. The low contrast of brain images further complicates this process. Early diagnosis of brain tumors is indeed beneficial to patients, doctors, and medical providers. Results: FCM segmentation works on images obtained from magnetic resonance imaging (MRI) scanners, requiring minor modifications to hospital operations to early diagnose tumors as most, if not all, hospitals rely on MRI machines for brain imaging. In this paper, we critically review and summarize FCM based techniques for brain MRI segmentation.


Author(s):  
V. K. Deepak ◽  
R. Sarath

In the medical image-processing field brain tumor segmentation is aquintessential task. Thereby early diagnosis gives us a chance of increasing survival rate. It will be way much complex and time consuming when comes to processing large amount of MRI images manually, so for that we need an automatic way of brain tumor image segmentation process. This paper aims to gives a comparative study of brain tumor segmentation, which are MRI-based. So recent methods of automatic segmentation along with advanced techniques gives us an improved result and can solve issue better than any other methods. Therefore, this paper brings comparative analysis of three models such as Deformable model of Fuzzy C-Mean clustering (DMFCM), Adaptive Cluster with Super Pixel Segmentation (ACSP) and Grey Wolf Optimization based ACSP (GWO_ACSP) and these are tested on CANCER IMAGE ACHRCHIEVE which is a preparation information base containing High Grade and Low-Grade astrocytoma tumors. Here boundaries including Accuracy, Dice coefficient, Jaccard score and MCC are assessed and along these lines produce the outcomes. From this examination the test consequences of Grey Wolf Optimization based ACSP (GWO_ACSP) gives better answer for mind tumor division issue.


2018 ◽  
pp. 2402-2419
Author(s):  
Jyotsna Rani ◽  
Ram Kumar ◽  
Fazal A. Talukdar ◽  
Nilanjan Dey

Image segmentation is a technique which divides an image into its constituent regions or objects. Segmentation continues till we reach our area of interest or the specified object of target. This field offers vast future scope and challenges for the researchers. This proposal uses the fuzzy c mean technique to segment the different MRI brain tumor images. This proposal also shows the comparative results of Thresholding, K-means clustering and Fuzzy c- means clustering. Dice coefficient and Jaccards measure is used for accuracy of the segmentation in this proposal. Experimental results demonstrate the performance of the designed method.


Sign in / Sign up

Export Citation Format

Share Document