scholarly journals An ECG signal model based on a parametric description of the characteristic waves

ACTA IMEKO ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 3
Author(s):  
Pavol Dolinsky ◽  
Imrich Andras ◽  
Linus Michaeli ◽  
Jan Saliga

This article introduces a new electrocardiogram (ECG) signal model based on geometric signal properties. Instead of the artificial functions used in common ECG models, the proposed model is based on the modelling of real ECG signals divided into time segments. Each segment has been modelled using simple geometrical forms. The final ECG signal model is represented by the sequence of parameters of the base functions. Parameter variations allow for the generation of different waveforms for each subsequent heartbeat without mixing up the PQRST waves order. Two basic models utilize slightly modified elementary functions, which are computationally simple. A combination of both models allows for the modelling of irregularities in the consecutive heartbeats of the specific ECG waveforms. Respiratory, noise, and powerline interference can be added in order to make the generated ECG signal more realistic. The model parameters are estimated by differential evolution optimization and a comparison between the modelled ECG and the acquired signal. The proposed models are tested by the database included in the LabVIEW Biomedical Toolkit and ECG records in the MIT-BIH arrhythmia database.

2020 ◽  
Vol 16 (2) ◽  
Author(s):  
Asma Haque ◽  
Abdur Rahman

Electrocardiogram (ECG) signal exhibits important distinctive feature for different cardiac issues. Automatic classification of electrocardiogram (ECG) signal can be used for primary detection of various heart conditions. Information about heart and ischemic changes of heart may be obtained from cleaned ECG signals. ECG signal has an important role in monitoring and diacritic of the heart patients. An accurate ECG classification is challenging problem. The accuracy often depends on proper selection of observing parameters as well as detection algorithms. Heart disorder means abnormal rhythm or abnormalities present in the heart. In this research work, we have developed a decision tree based algorithm to classify heart problems by utilizing the statistical signal characteristic (SSC) of an ECG signal. The proposed model has been tested with real ECG signal to successfully (60-98%) detect normal, apnea and ventricular tachyarrhythmia condition.


Author(s):  
SAURAV MANDAL ◽  
NABANITA SINHA

This study aims to present an efficient model for autodetection of cardiac arrhythmia by the diagnosis of self-affinity and identification of governing processes of a number of Electrocardiogram (ECG) signals taken from MIT-BIH database. In this work, the proposed model includes statistical methods to find the diagnosis pattern for detecting cardiac abnormalities which is useful for the computer aided system for arrhythmia detection. First, the Rescale Range (R/S) analysis has been employed for ECG signals to understand the scaling property of ECG signals. The value of Hurst exponent identifies the presence of abnormality in ECG signals taken for consideration with 92.58% accuracy. In this study, Higuchi method which deals with unifractality or monofractality of signals has been applied and it is found that unifractality is sufficient to detect arrhythmia with 91.61% accuracy. The Multifractal Detrended Fluctuation Analysis (MFDFA) has been used over the present signals to identify and confirm the multifractality. The nature of multifractality is different for arrhythmia patients and normal heart condition. The multifractal analysis is useful to detect abnormalities with 93.75% accuracy. Finally, the autocorrelation analysis has been used to identify the prevalent governing process in the present arrhythmic ECG signals and study confirms that all the signals are governed by stationary autoregressive methods of certain orders. In order to increase the overall efficiency, this present model deals with analyzing all the statistical features extracted from different statistical techniques for a large number of ECG signals of normal and abnormal heart condition. Finally, the result of present analysis altogether possibly indicates that the proposed model is efficient to detect cardiac arrhythmia with 99.3% accuracy.


Heart and Eye are two vital organs in the human system. By knowing the Electrocardiogram (ECG) and Electro-oculogram (EOG), one will be able to tell the stability of the heart and eye respectively. In this project, we have developed a circuit to pick the ECG and EOG signal using two wet electrodes. Here no reference electrode is used. EOG and ECG signals have been acquired from ten healthy subjects. The ECG signal is obtained from two positions, namely wrist and arm position respectively. The picked-up biomedical signal is recorded and heart rate information is extracted from ECG signal using the biomedical workbench. The result found to be promising and acquired stable EOG and ECG signal from the subjects. The total gain required for the arm position is higher than the wrist position for the ECG signal. The total gain necessary for the EOG signal is higher than the ECG signal since the ECG signal is in the range of millivolts whereas EOG signal in the range of microvolts. This two-electrode system is stable, cost-effective and portable while still maintaining high common-mode rejection ratio (CMRR).


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2835 ◽  
Author(s):  
Zhongjie Hou ◽  
Jinxi Xiang ◽  
Yonggui Dong ◽  
Xiaohui Xue ◽  
Hao Xiong ◽  
...  

A prototype of an electrocardiogram (ECG) signal acquisition system with multiple unipolar capacitively coupled electrodes is designed and experimentally tested. Capacitively coupled electrodes made of a standard printed circuit board (PCB) are used as the sensing electrodes. Different from the conventional measurement schematics, where one single lead ECG signal is acquired from a pair of sensing electrodes, the sensing electrodes in our approaches operate in a unipolar mode, i.e., the biopotential signals picked up by each sensing electrodes are amplified and sampled separately. Four unipolar electrodes are mounted on the backrest of a regular chair and therefore four channel of signals containing ECG information are sampled and processed. It is found that the qualities of ECG signal contained in the four channel are different from each other. In order to pick up the ECG signal, an index for quality evaluation, as well as for aggregation of multiple signals, is proposed based on phase space reconstruction. Experimental tests are carried out while subjects sitting on the chair and clothed. The results indicate that the ECG signals can be reliably obtained in such a unipolar way.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Jia Li ◽  
Yujuan Si ◽  
Tao Xu ◽  
Saibiao Jiang

Although convolutional neural networks (CNNs) can be used to classify electrocardiogram (ECG) beats in the diagnosis of cardiovascular disease, ECG signals are typically processed as one-dimensional signals while CNNs are better suited to multidimensional pattern or image recognition applications. In this study, the morphology and rhythm of heartbeats are fused into a two-dimensional information vector for subsequent processing by CNNs that include adaptive learning rate and biased dropout methods. The results demonstrate that the proposed CNN model is effective for detecting irregular heartbeats or arrhythmias via automatic feature extraction. When the proposed model was tested on the MIT-BIH arrhythmia database, the model achieved higher performance than other state-of-the-art methods for five and eight heartbeat categories (the average accuracy was 99.1% and 97%). In particular, the proposed system had better performance in terms of the sensitivity and positive predictive rate for V beats by more than 4.3% and 5.4%, respectively, and also for S beats by more than 22.6% and 25.9%, respectively, when compared to existing algorithms. It is anticipated that the proposed method will be suitable for implementation on portable devices for the e-home health monitoring of cardiovascular disease.


Author(s):  
Kenyu Uehara ◽  
Takashi Saito

Abstract We have modeled dynamics of EEG with one degree of freedom nonlinear oscillator and examined the relationship between mental state of humans and model parameters simulating behavior of EEG. At the IMECE conference last year, Our analysis method identified model parameters sequentially so as to match the waveform of experimental EEG data of the alpha band using one second running window. Results of temporal variation of model parameters suggested that the mental condition such as degree of concentration could be directly observed from the dynamics of EEG signal. The method of identifying the model parameters in accordance with the EEG waveform is effective in examining the dynamics of EEG strictly, but it is not suitable for practical use because the analysis (parameter identification) takes a long time. Therefore, the purpose of this study is to test the proposed model-based analysis method for general application as a neurotechnology. The mathematical model used in neuroscience was improved for practical use, and the test was conducted with the cooperation of four subjects. model parameters were experimentally identified approximately every one second by using least square method. We solved a binary classification problem of model parameters using Support Vector Machine. Results show that our proposed model-based EEG analysis is able to discriminate concentration states in various tasks with an accuracy of over 80%.


Author(s):  
CHUANG-CHIEN CHIU ◽  
CHOU-MIN CHUANG ◽  
CHIH-YU HSU

The main purpose of this study is to present a novel personal authentication approach with the electrocardiogram (ECG) signal. The electrocardiogram is a recording of the electrical activity of the heart and the recorded signals can be used for individual verification because ECG signals of one person are never the same as those of others. The discrete wavelet transform was applied for extracting features that are the wavelet coefficients derived from digitized signals sampled from one-lead ECG signal. By the proposed approach applied on 35 normal subjects and 10 arrhythmia patients, the verification rate was 100% for normal subjects and 81% for arrhythmia patients. Furthermore, the performance of the ECG verification system was evaluated by the false acceptance rate (FAR) and false rejection rate (FRR). The FAR was 0.83% and FRR was 0.86% for a database containing only 35 normal subjects. When 10 arrhythmia patients were added into the database, FAR was 12.50% and FRR was 5.11%. The experimental results demonstrated that the proposed approach worked well for normal subjects. For this reason, it can be concluded that ECG used as a biometric measure for personal identity verification is feasible.


Author(s):  
Mohand Lokman Ahmad Al-dabag ◽  
Haider Th. Salim ALRikabi ◽  
Raid Rafi Omar Al-Nima

One of the common types of arrhythmia is Atrial Fibrillation (AF), it may cause death to patients. Correct diagnosing of heart problem through examining the Electrocardiogram (ECG) signal will lead to prescribe the right treatment for a patient. This study proposes a system that distinguishes between the normal and AF ECG signals. First, this work provides a novel algorithm for segmenting the ECG signal for extracting a single heartbeat. The algorithm utilizes low computational cost techniques to segment the ECG signal. Then, useful pre-processing and feature extraction methods are suggested. Two classifiers, Support Vector Machine (SVM) and Multilayer Perceptron (MLP), are separately used to evaluate the two proposed algorithms. The performance of the last proposed method with the two classifiers (SVM and MLP) show an improvement of about (19% and 17%, respectively) after using the proposed segmentation method so it became 96.2% and 97.5%, respectively.


Author(s):  
WANSONG XU ◽  
TIANWU CHEN ◽  
FANYU DU

Objective: The detection of QRS complexes is an important part of computer-aided analysis of electrocardiogram (ECG). However, most of the existing detection algorithms are mainly for single-lead ECG signals, which requires high quality of signal. If the signal quality decreases suddenly due to some interference, then the current algorithm is easy to cause misjudgment or missed detection. To improve the detection ability of QRS complexes under sudden interference, we study the QRS complexes information on multiple leads in-depth, and propose a two-lead joint detection algorithm of QRS complexes. Methods: Firstly, the suspected QRS complexes are screened on the main lead. For the suspected QRS complexes with low confidence and the complexes that may be missed, further accurate detection and joint judgment shall be carried out at the corresponding position of the auxiliary lead. At the same time, the adaptive threshold adjustment algorithm and backtracking mechanism are used to modify the detection results. Results: The proposed detection algorithm is validated using 48 ECG records of the MIT-BIH arrhythmia database, and achieves average detection accuracy of 99.71%, sensitivity of 99.88% and positive predictivity of 99.81%. Conclusion: The proposed algorithm has high accuracy, which can effectively deal with the sudden interference of ECG signal. Meanwhile, the algorithm requires small amount of computation, and can be embedded into hardware for real-time detection.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Enbiao Jing ◽  
Haiyang Zhang ◽  
ZhiGang Li ◽  
Yazhi Liu ◽  
Zhanlin Ji ◽  
...  

Based on a convolutional neural network (CNN) approach, this article proposes an improved ResNet-18 model for heartbeat classification of electrocardiogram (ECG) signals through appropriate model training and parameter adjustment. Due to the unique residual structure of the model, the utilized CNN layered structure can be deepened in order to achieve better classification performance. The results of applying the proposed model to the MIT-BIH arrhythmia database demonstrate that the model achieves higher accuracy (96.50%) compared to other state-of-the-art classification models, while specifically for the ventricular ectopic heartbeat class, its sensitivity is 93.83% and the precision is 97.44%.


Sign in / Sign up

Export Citation Format

Share Document