scholarly journals Mechanism of Baihe Decoction in the treatment of coronary heart disease based on network pharmacology and molecular docking

2021 ◽  
Vol 10 (3) ◽  
pp. 3205-3218
Author(s):  
Yaxian Jin ◽  
Xiaodan Yin ◽  
Zhenying Li ◽  
Jiangyan Xu
2021 ◽  
Author(s):  
Jiahao Ye ◽  
Ruiping Yang ◽  
Zhixi Hu ◽  
Lin Li ◽  
Senjie Zhong ◽  
...  

Abstract Background: Network pharmacology has been widely adopted for mechanistic studies of Traditional Chinese Medicines (TCM). The present study uses network pharmacology to investigate the main ingredients, targets and pathways of Danxiong Tongmai Granules (DXTMG) in the treatment of coronary heart disease (CHD). We aim to validate our findings using molecular docking and molecular dynamics simulations.Methods: TCM compounds and targets were identified via searches in the BATMAN-TCM database, and the GeneCards database were used to obtain the main target genes involved in CHD, We combined disease targets with the drug targets to identify common targets, and draw a Venn diagram to visualize the results. The "TCM-compound-target" network was plotted using Cytoscape 3.7.2 software and a protein-protein interaction (PPI) network was constructed using the STRING database from which core targets were obtained. Gene ontology (GO) function analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed for common drug-disease targets using R Version 4.0.4 (64 bit) software. Molecular docking of core protein-small molecule ligand interaction was modeled using AutoDock Vina software. A simulation of molecular dynamics was conducted for the optimal protein-ligand complex obtained by molecular docking using Amber18 software.Results: 162 potential targets of DXTMG involved in CHD were identified. These included INS, ALB, IL-6 and TNF according to PPI network studies. GO enrichment analysis identified a total of 3365 GO pathways, including 3049 biological process pathways (BP) concerned with the heart and circulatory system;109 cellular component (CC) pathways, including cation channels and membrane rafts and 207 molecular function (MF) pathways related to receptor ligands and activators. KEGG analysis revealed a total of 137 pathways (p<0.05), including those related to AGE-RAGE signaling associated with diabetic complications, fluid shear stress and atherosclerosis. Molecular docking revealed the highest binding energy for Neocryptotanshinone Ii (the key compound of DXTMG) and TNF. Molecular dynamics simulation indicated stable binding for TNF-Neocryptotanshinone Ii with strong hydrophobic interactions mediated predominantly by the hydrophobic residues, Leu279, Val280 and Phe278 plus hydrogen-bonding with Leu279.Conclusion: The present study reveals novel insights into the mechanism of DXTMG in treating CHD. DXTMG can influence oxidative stress、inflammation response and regulating cardiomyocytes, thereby reducing the occurrence and development of CHD.


2020 ◽  
Author(s):  
Zhihong Huang ◽  
Siyu Guo ◽  
Changgeng Fu ◽  
Wei Zhou ◽  
Jingyuan Zhang ◽  
...  

Abstract Background: Xintong Granule (XTG) is a Chinese patent medicine composed of 13 Chinese herbs, which is widely used in the treatment of coronary heart disease (CHD). However, there are few studies on it, and its potential pharmacological mechanism needs to be further elucidated.Methods: In this study, network pharmacology was employed to construct the drug-compounds-targets-pathways molecular regulatory network of the treatment of CHD to explore the effective compounds of XTG and its underlying pharmacological mechanism. First, we established the related ingredients and potential targets of these ingredients databases by Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) and A Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine (BATMAN-TCM). Next, the CHD targets were obtained in DigSee, OMIM, DisGeNET, TTD, GeneCards and GenCLiP3 database. Then, protein-protein interaction (PPI) analysis, GO and KEGG pathway enrichment analysis were carried out and the core targets were filtered by topology. Moreover, molecular docking was performed to assess the binding potential of hub targets and key compounds.Results: The result reflected that 178 components of XTG and 669 putative therapeutic targets were screened out. After a systematic and comprehensive analysis, we identified 9 hub targets (TNF, MAPK1, STAT3, IL6, AKT1, INS, EGFR, EGF, TP53) primarily participated in the comprehensive therapeutic effect related to blood circulation, vascular regulation, cell membrane region, compound binding, receptor activity, signal transduction, AGE-RAGE signaling pathway in diabetic complications, JAK-STAT signaling pathway, PI3K-AKT signaling pathway and MAPK signaling pathway.Conclusion: The results of this study tentatively clarified the potential targets and signaling pathways of XTG against CHD, which may benefit to the development of clinical experimental research and application.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Dan Li ◽  
Longtao Liu ◽  
Shengjie Yang ◽  
Yanwei Xing ◽  
Limin Pan ◽  
...  

Background. Coronary heart disease (CHD) seriously affects human health, and its pathogenesis is closely related to atherosclerosis. The Huzhang (the root of Polygonum cuspidatum)–Shanzha (the fruit of Crataegus sp.), a classic herb pair, has been widely used for the treatment of CHD. In recent years, Huzhang–Shanzha herb pair (HSHP) was found to have a wide range of effects in CHD; however, its therapeutic specific mechanisms remain to be further explored. The aim of this study was to elucidate the molecular mechanism of HSHP in the treatment of CHD using a network pharmacology analysis approach. Methods. The Batman-TCM database was used to explore bioactive compounds and corresponding targets of HSHP. CHD disease targets were extracted from Genecards, OMIM, PharmGkb, TTD, and DrugBank databases. Then, the protein-protein interaction (PPI) network was constructed using the STRING web platform and Cytoscape software. GO functional and KEGG pathway enrichment analyses were carried out on the Metascape web platform. Finally, molecular docking of the active components was assessed to verify the potential targets of HSHP to treat CHD by the AutoDock Vina and PyMOL software. Results. Totally, 243 active components and 2459 corresponding targets of LDP were screened out. Eighty-five common targets of HSHP and CHD were identified. The results of the network analysis showed that resveratrol, anthranone, emodin, and ursolic acid could be defined as four therapeutic components. TNF, ESR1, NFКB1, PPARG, INS, TP53, NFКBIA, AR, PIK3R1, PIK3CA, PTGS2, and NR3C1 might be the 12 key targets. These targets were mainly involved in the regulation of biological processes, such as inflammatory responses and lipid metabolism. Enrichment analysis showed that the identified genes were mainly involved in fluid shear force, insulin resistance (IR), inflammation, and lipid metabolism pathways to contribute to CHD. This suggests that resveratrol, anthranone, emodin, and ursolic acid from HSHP can be the main therapeutic components of atherosclerosis. Conclusion. Using network pharmacology, we provide new clues on the potential mechanism of action of HSHP in the treatment of CHD, which may be closely related to the fluid shear force, lipid metabolism, and inflammatory response.


2020 ◽  
Author(s):  
Yue-hong Shen ◽  
Shu-lin Wang ◽  
Na Wu ◽  
Yu-chen Dai ◽  
Qian Zhou ◽  
...  

Abstract ObjectiveOur study aimed to investigate the potential mechanisms of the herb pair Zhizi-Danshen (ZD) for coronary heart disease (CHD) using network pharmacological data mining technology.MethodsThe Traditional Chinese Medicine System Pharmacology (TCMSP) database was used to collect the active ingredients of ZD and predict ZD-related target proteins. Afterwards, we identified CHD-related targets from DisGeNET database, NCBI gene database, and TTD database. The common targets both from ZD and CHD were screened by Venny2.1, which were then imported into the String database for protein-protein interaction (PPI) analysis. Finally, the GO and KEGG enrichment analysis were performed by R software, and the network construction was established using Cytoscape3.7.2.ResultsWe obtained 199 possible targets from 62 candidate ingredients of ZD and 1033 CHD-ralated targets, with 83 overlapping common target genes. Then, 11 core targets were acquired from PPI network analysis. Further, GO analysis showed that these common targets mainly influenced receptor ligand activity,cytokine activity,cytokine receptor binding,steroid hormone receptor activity, and peptide binding. KEGG pathway analysis indicated that ZD affected CHD through seven important pathways linked to vascular endothelial function regulation (fluid shear stress and atherosclerosis,AGE-RAGE signaling pathway in diabetic complications, HIF-1 signaling pathway), imflammatory effects (IL-17 signaling pathway, TNF signaling pathway,Toll-like receptor signaling pathway),and hormone regulation (relaxin signaling pathway). ConclusionsThis study revealed the potential pharmacological mechanisms of ZD against CHD, which were mainly associated with regulation of vascular endothelial function and inflammatory effects, promotion of vasodilatation, and prevention of cardiac fibrosis. Moreover, it provided a novel conception for the development of alternative therapies on CHD.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Fei Li ◽  
Jialin Duan ◽  
Meina Zhao ◽  
Shaojie Huang ◽  
Fei Mu ◽  
...  

AbstractSalvia miltiorrhiza-Dalbergia odorifera coupled-herbs (SMDOCH) has been used to treat coronary heart disease (CHD) for thousands of years, but its unclear bioactive components and mechanisms greatly limit its clinical application. In this study, for the first time, we used network pharmacology to elucidate the mechanisms of action of SMDOCH on CHD. We collected 270 SMDOCH-related targets from 74 bioactive components and 375 CHD-related targets, with 58 overlapping common targets. Next, we performed enrichment analysis for common-target network and protein-protein interaction (PPI) network. The results showed that SMDOCH affected CHD mainly through 10 significant signaling pathways in three biological processes: ‘vascular endothelial function regulation’, ‘inflammatory response’, and ‘lipid metabolism’. Six pathways belonged to the ‘vascular endothelial function regulation’ model, which primarily regulated hormone (renin, angiotensin, oestrogen) activity, and included three key upstream pathways that influence vascular endothelial function, namely KEGG:04933, KEGG:05418, and KEGG:04066. Three pathways, namely KEGG:04668, KEGG:04064, and KEGG:04620, belonged to the ‘inflammatory response’ model. One pathway (KEGG:04920) belonged to the ‘lipid metabolism’ model. To some extent, this study revealed the potential bioactive components and pharmacological mechanisms of SMDOCH on CHD, and provided a new direction for the development of new drugs for the treatment of CHD.


2013 ◽  
Vol 756-759 ◽  
pp. 2868-2872
Author(s):  
Wei Ye Tao ◽  
Lai You Wang ◽  
Guo Hua Cheng ◽  
Jun Liu ◽  
Lang Ping Tang

Sini Decoction is a traditional Chinese medicine which has a curative effect. The mode of action between small molecules and the targets were presented visually, which provided an in-depth interpretation about the pharmacodynamic material basis. It is valuable for the research and development of new drugs. Experimental results show that we can reveal the treatment mechanism of Sini Decoction in molecular level by molecular docking.


2021 ◽  
Vol 12 ◽  
Author(s):  
Li-ying Jia ◽  
Gui-yun Cao ◽  
Jia Li ◽  
Lu Gan ◽  
Jin-xin Li ◽  
...  

SheXiang XinTongNing (XTN), which is composed of six traditional Chinese herbs, is a commercially available Chinese patent medicine that has been widely used as the treatment of coronary heart disease (CHD). Its mechanisms against coronary heart disease, however, remain largely unknown. This study aimed to investigate the pharmacological mechanisms of XTN against CHD via network pharmacology and experimental evaluation. In this study, GO enrichment and KEGG pathway enrichment were firstly performed for acquiring the potentially active constituents of XTN, the candidate targets related to coronary heart disease, the drug-components-targets network as well as the protein-protein interaction network and further predicting the mechanisms of XTN against coronary heart disease. Subsequently, a series of in vitro experiments, specifically MTT assay, flow cytometry and Real-time quantitative polymerase chain reaction analysis, and a succession of in vivo experiments, including Tunel staining and immunohistochemical staining were conducted for further verification. Results showed that Bcl-2, IGF1, CASP3 were the key candidate targets which significantly associated with multiple pathways, namely PI3K-Akt signaling pathway and MAPK signaling pathway. It indicated that the potential mechanism of XTN against CHD may be predominantly associated with cell apoptosis. The in vitro experimental results showed that XTN treatment remarkably decreased the apoptotic rate and Bax/Bcl-2 ratio of H9c2 cells. Histological results confirmed that XTN not only effectively alleviated oxidative damage caused by myocardial ischemia but inhibited cell apoptosis. Given the above, through the combined utilization of virtual screening and experimental verification, the findings suggest that XTN makes a significant contribution in protecting the heart from oxidative stress via regulating apoptosis pathways, which lays the foundations and offers an innovative idea for future research.


2020 ◽  
Author(s):  
Ying Li ◽  
Guhang Wei ◽  
Zhenkun Zhuang ◽  
Mingtai Chen ◽  
Changjian Yuan ◽  
...  

Abstract BackgroundCorydalis Rhizoma(CR) showed a high efficacy for coronary heart disease (CHD). However, the interaction between the active ingredients of CR and the targets of CHD has not been unequivocally explained in previous researches. To study the active components and potential targets of Corydalis Rhizoma and to determine the mechanism underlying the exact effect of Corydalis Rhizoma on coronary heart disease, a method of network pharmacology was used.Materials and MethodsThe active components of CR and targets corresponding to each component were scanned out from Traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP), and target genes of CHD were searched on GeneCards database and Online Mendelian Inheritance in Man(OMIM) database. The active components and common targets of CR and CHD were used to build the “CR-CHD” network through Cytoscape (version 3.2.1) software as well as protein-protein interaction(PPI) network on String database. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis was executed by clusterProfiler(version 3.8) and DOSE(version 3.6) package on R platform.Results49 active ingredients and 394 relevant targets of CR and the 7173 CHD-related genes were retrieved. 40 common genes were selected for subsequent analysis. Crucial biological processes and pathways were obtained and analyzed, including DNA-binding transcription activator activity, RNA polymerase II-specific, RNA polymerase II transcription factor binding, kinase regulator activity, ubiquitin-like protein ligase binding, fluid shear stress and atherosclerosis, TNF signaling pathway, apoptosis, MAPK signaling pathway and PI3K-Akt signaling pathway.ConclusionsOverall, CR could alleviate CHD through the mechanisms predicted by network pharmacology, laying the foundation for future development of new drugs from traditional Chinese medicine on CHD.


Sign in / Sign up

Export Citation Format

Share Document