scholarly journals Accuracy Estimation and Usage Experience of the Thermal Anomalies Detecting Algorithms Based on Himawari-8 Satellite Data

Author(s):  
I.V. Balashov ◽  
◽  
M.A. Burtsev ◽  
А.А. Mazurov ◽  
K.S. Senko ◽  
...  
2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Malvina Silvestri ◽  
Federico Rabuffi ◽  
Massimo Musacchio ◽  
Sergio Teggi ◽  
Maria Fabrizia Buongiorno

In this work, the land surface temperature time series derived using Thermal InfraRed (TIR) satellite data offers the possibility to detect thermal anomalies by using the PCA method. This approach produces very detailed maps of thermal anomalies, both in geothermal areas and in urban areas. Tests were conducted on the following three Italian sites: Solfatara-Campi Flegrei (Naples), Parco delle Biancane (Grosseto) and Modena city.


2021 ◽  
Vol 333 ◽  
pp. 02017
Author(s):  
Nikita Yakimov ◽  
Evgenii Ponomarev ◽  
Tatiana Ponomareva

A method for recovery monitoring in post-fire and post-technogenic landscapes was proposed based on satellite data in a wide spectral range, including the infrared band data. A decrease in the spectral surface albedo in post-fire areas, caused by the destruction of on-ground vegetation, provokes excessive heating of the surface and upper soil layer. Surface thermal anomalies were evaluated under conditions of changes in the heat-insulating properties of vegetation and ground cover. The relative temperature anomalies in post-fire plots (overestimation up to 30% compared to non-disturbed territory) are typical for permafrost conditions of Siberia. Similar process was recorded for both natural (post-fire) and post-technogenic landscapes. Within 22 years after the fire, thermal insulation properties of the vegetation cover were restored. Thus, the relative temperature anomaly (of 3±1%) has reached the background value. In post-technogenic plots, conditions are more “contrast” compared to the background, and restoration of the thermal regime takes significantly longer (>60 years). “Neo-technogenic ecosystems” with specific soil thermal regimes compared to the background ones are formed both for reclaimed and for non-reclaimed post-technogenic plots. On average, surface temperature has overestimated at least by 10–15% in post-technogenic plots compared to non-disturbed territory.


Author(s):  
Mebrouk Bellaoui ◽  
Abdelatif Hassini ◽  
Kada Bouchouicha

Thermal anomaly Detection prior to earthquake events has been widely confirmed by researchers over the past decade. In this paper, we use robust satellite technique approach (RST) on a collection of six years of MODIS satellite data, representing land surface temperature (LST) images to predict 21st May 2003 Boumerdès Algeria earthquake. The thermal anomalies results were compared with the ambient temperature variation measured in three meteorological stations of Algerian National Office of Meteorology (ONM) (DELLYS-AFIR, TIZI-OUZOU, and DAR-EL-BEIDA). The results confirm the importance of robust satellite technique as an approach highly effective for monitoring the earthquakes.


2020 ◽  
Vol 149 ◽  
pp. 03012
Author(s):  
Valentin Kashkin ◽  
Roman Odintsov ◽  
Tatyana Rubleva ◽  
Konstantin Simonov ◽  
Julia Tsup

Using ATOVS satellite data (NOAA / POES) atmospheric disturbances that arose in the equatorial zone of Indonesia in the fall of 2018 were studied as a reaction to the geophysical manifestations of the geodynamic activity of a strong earthquake with a magnitude of M = 7,5. An archive of satellite information has been formed. A technique has been developed for analyzing the temperature of profiles during strong seismic activity of the Sulawes phenomenon. The atmospheric effects over the seismically active region of this earthquake were studied. It was found that in the troposphere during the study period anomalies with lower temperatures are observed above the epicenter region of the Indonesian earthquake and thermal anomalies with elevated temperatures are formed in the lower stratosphere.


2020 ◽  
Vol 12 (19) ◽  
pp. 3232
Author(s):  
Nicola Genzano ◽  
Nicola Pergola ◽  
Francesco Marchese

Several satellite-based systems have been developed over the years to study and monitor thermal volcanic activity. Most of them use high temporal resolution satellite data, provided by sensors like the Moderate Resolution Imaging Spectroradiometer (MODIS) that if on the one hand guarantee a continuous monitoring of active volcanic areas on the other hand are less suited to map thermal anomalies, and to provide accurate information about their features. The Multispectral Instrument (MSI) and the Operational Land Imager (OLI), respectively, onboard the Sentinel-2 and Landsat-8 satellites, providing Short-Wave Infrared (SWIR) data at 20 m (MSI) and 30 m (OLI) spatial resolution, may make an important contribution in this area. In this work, we present the first Google Earth Engine (GEE) App to investigate, map and monitor volcanic thermal anomalies at global scale, integrating Landsat-8 OLI and Sentinel-2 MSI observations. This open tool, which implements the Normalized Hot spot Indices (NHI) algorithm, enables the analysis of more than 1400 active volcanoes, with very low processing times, thanks to the high GEE computational resources. Performance and limitations of the tool, such as its next upgrades, aiming at increasing the user-friendly experience and extending the temporal range of data analyses, are analyzed and discussed.


2013 ◽  
Vol 13 (1) ◽  
pp. 91-95 ◽  
Author(s):  
G. Guangmeng ◽  
Y. Jie

Abstract. Thermal anomalies detected from satellite data are widely reported. Nearly all the anomalies are reported after the quake. Here we report three earthquake predictions in Italy and Iran according to satellite cloud anomalies. These cloud anomalies usually show a linear pattern, stay there for hours and do not move with winds. According to these anomalies, we can give a rough estimation about impending earthquake activities. All the estimated dates and magnitudes are in good agreement with the earthquake facts, and the only unsatisfactory point is that the distance error is 100–300 km. Because the cloud anomaly is long, we can not reduce the distance error further. A possible way is to combine geophysical data and satellite data together to estimate the epicenter and this will increase the prediction accuracy.


2011 ◽  
Vol 4 (1) ◽  
pp. 500-502
Author(s):  
Md. Fazlul Haque ◽  
◽  
Md. Mostafizur Rahman Akhand ◽  
Dr. Dewan Abdul Quadir

Sign in / Sign up

Export Citation Format

Share Document