scholarly journals Synthesis and characterization of biological nanomaterial/poly(vinylidene fluoride) composites

2021 ◽  
Author(s):  
Eftihia Barnes ◽  
Jennifer Jefcoat ◽  
Erik Alberts ◽  
Hannah Peel ◽  
L. Mimum ◽  
...  

The properties of composite materials are strongly influenced by both the physical and chemical properties of their individual constituents, as well as the interactions between them. For nanocomposites, the incorporation of nano-sized dopants inside a host material matrix can lead to significant improvements in mechanical strength, toughness, thermal or electrical conductivity, etc. In this work, the effect of cellulose nanofibrils on the structure and mechanical properties of cellulose nanofibril poly(vinylidene fluoride) (PVDF) composite films was investigated. Cellulose is one of the most abundant organic polymers with superior mechanical properties and readily functionalized surfaces. Under the current processing conditions, cellulose nanofibrils, as-received and 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) oxidized, alter the crystallinity and mechanical properties of the composite films while not inducing a crystalline phase transformation on the 𝛾 phase PVDF composites. Composite films obtained from hydrated cellulose nanofibrils remain in a majority 𝛾 phase, but also exhibit a small, yet detectable fraction of 𝛼 and ß PVDF phases.

Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1091 ◽  
Author(s):  
Eftihia Barnes ◽  
Jennifer A. Jefcoat ◽  
Erik M. Alberts ◽  
Mason A. McKechnie ◽  
Hannah R. Peel ◽  
...  

Cellulose nanofibrils (CNFs) are high aspect ratio, natural nanomaterials with high mechanical strength-to-weight ratio and promising reinforcing dopants in polymer nanocomposites. In this study, we used CNFs and oxidized CNFs (TOCNFs), prepared by a 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-mediated oxidation process, as reinforcing agents in poly(vinylidene fluoride) (PVDF). Using high-shear mixing and doctor blade casting, we prepared free-standing composite films loaded with up to 5 wt % cellulose nanofibrils. For our processing conditions, all CNF/PVDF and TOCNF/PVDF films remain in the same crystalline phase as neat PVDF. In the as-prepared composites, the addition of CNFs on average increases crystallinity, whereas TOCNFs reduces it. Further, addition of CNFs and TOCNFs influences properties such as surface wettability, as well as thermal and mechanical behaviors of the composites. When compared to neat PVDF, the thermal stability of the composites is reduced. With regards to bulk mechanical properties, addition of CNFs or TOCNFs, generally reduces the tensile properties of the composites. However, a small increase (~18%) in the tensile modulus was observed for the 1 wt % TOCNF/PVDF composite. Surface mechanical properties, obtained from nanoindentation, show that the composites have enhanced performance. For the 5 wt % CNF/PVDF composite, the reduced modulus and hardness increased by ~52% and ~22%, whereas for the 3 wt % TOCNF/PVDF sample, the increase was ~23% and ~25% respectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Eduardo Sadot Herrera-Sosa ◽  
Gonzalo Martínez-Barrera ◽  
Carlos Barrera-Díaz ◽  
Epifanio Cruz-Zaragoza

In polymer reinforced concrete, the Young’s modulus of both polymers and cement matrix is responsible for the detrimental properties of the concrete, including compressive and tensile strength, as well as stiffness. A novel methodology for solving such problems is based on use of ionizing radiation, which has proven to be a good tool for improvement on physical and chemical properties of several materials including polymers, ceramics, and composites. In this work, particles of 0.85 mm and 2.80 mm obtained from waste tire were submitted at 250 kGy of gamma radiation in order to modify their physicochemical properties and then used as reinforcement in Portland cement concrete for improving mechanical properties. The results show diminution on mechanical properties in both kinds of concrete without (or with) irradiated tire particles with respect to plain concrete. Nevertheless such diminutions (from 2 to 16%) are compensated with the use of high concentration of waste tire particles (30%), which ensures that the concrete will not significantly increase the cost.


Author(s):  
Saurav Arora

Until few years, the so-called implausible science, homeopathy, was on the verge of being rejected on conventional physicochemical grounds. The mere selection of ultrahigh dilutions (UHD) (homeopathic potencies) for experimentation by mainstream scientists seemed impossible, but the curiosity to explore the science behind homeopathy kept igniting intellectual alma mater who subjected homeopathy to laboratories and test tubes, to know beyond its clinical application. Still, there exist a huge gap and a challenge to convince a conventional scientist to go beyond his domains and look for something which is apparently invisible (beyond Avogadro). But gradually we are overcoming this dogma and exploring the finer aspects and applications of UHDs. Much research has been undertaken, at least, to protect the identity of UHDs, and we are now verge of proving the plausibility of homeopathy from every aspect. This issue of International Journal of High Dilution Research features two interesting articles on nature of UHDs and their unconventional application. The first article by NC Sukul et al aimed to decipher the nature of the water structure of UHDs of two commonly used homeopathic drugs Natrum muriaticum and Sulphur by Laser Raman Spectroscopy. This work is in the series undertaken by the group, who earlier experimented using Nuclear Magnetic Resonance; Electronic, Vibrational and Raman spectroscopy to shown differences in UHDs of various drugs. The present experiment could differentiate the intensities (potencies) of Nat-m and Sulph when compared to their controls, on the basis of hydrogen bond strength and free OH groups. The second article by Nandy et al proposes a new dimension to the application of UHD. In an interesting manner, the author used UHDs of Ferrum metallicum and Zincum oxidatum to improve the electrical properties of the electroactive Poly (vinylidene fluoride-hexafluoropropylene) (PVDF-HFP). The PVDF-HFP composite films were synthesized in their usual way, but an incorporation of Ferrum and Zinc-o could make the film as homeo-PVDF-composite. This enhancement of the electrical properties and are possibly due to the presence of nanoparticle, as hypothesized by the group. The nature and application of UHDs are promising but challenging areas, which can only be validated through extensive research and validation. The realm of UHDs is expanding, and the day is not far when plausibility of homeopathy would be proved from every aspect, but at the same time we should also keep the momentum of research at pace in clinical research too!


2021 ◽  
Vol 316 ◽  
pp. 51-55
Author(s):  
Tamara I. Shishelova ◽  
Vadim V. Fedchishin ◽  
Mikhail A. Khramovskih

Rapid expansion of technologies poses higher requirements to structural materials and items made of them. Conventional materials are being replaced by composite materials (composites). Different additives enhancing the properties of initial materials are used as reinforcement fibers of composites. Utilization of micro-and nanosize particles for production of present-day materials is paid much attention to. Whiskers are among such materials. These crystals have high strength, high chemical and temperature resistance. But for rational utilization of whickers of different chemical composition in composite materials one should know their physical and chemical properties. Objectives of the paper: to study physical and chemical properties of whiskers in different compounds, their composition and structure; to prove experimentally the feasibility of utilizing whiskers as a reinforcement fiber of composite materials. Object of study: specimens of whiskers of silicon nitride (Si3N4), aluminum oxide (Al2O3), aluminum nitride (AlN), and mullite (Al6Si2O13). Methods of investigation: thermal study of specimens, study of mechanical properties and chemical strength, and IR-spectroscopy. Results of study: specimens of whiskers have been studied and their mechanical properties have been tabulated for comparison. Extensive thermal investigation was followed by deduction of regularities and identification of chemical properties of whiskers. IR-spectra of whiskers have been studied and conclusions on molecular composition and on presence of impurities in some whiskers have been made.


Author(s):  
Tjokorda Gde Tirta Nindhia ◽  
Zdenek Knejzlík ◽  
Tomáš Ruml ◽  
I Wayan Surata ◽  
Tjokorda Sari Nindhia

Silk can be produced by spider or insect and have prospect as biomaterial for regenerative healing in medical treatment. Silk having physical and chemical properties that support biocompatibility in the living things..In this research, silk that was obtained from Indonesia natural resource of Attacus atlas silkmoth was explored and then will be  developed for biocompatible biomaterial. The treatment with NaOH was developed to separate the fiber from the cocoon. The obtained fiber is investigated its mechanical property by performing tensile test for single fiber. The biocompatibility testing was conducted with human cell (osteosarccoma) cultivation. The result identify that separation by using NaOH yield better better mechanical properties comparing konvenstional method with boiling in hot water. Biocompatibility testing indicate that the the fiber having good biocompatibility.


2014 ◽  
Vol 716-717 ◽  
pp. 7-10
Author(s):  
Jian Chen

Vinylidenefluoride (VDF) and chlorotrifluoroethylene (CTFE) copolymers were crosslinked by ultraviolet irradiation, chlorotrifluoroethylene content has a great influence on the crosslinked copolymers, high CTFE content support more joint pots, the properties of the copolymer shows higher storage modulus, the loss modulus gets smaller. The copolymer mechanical properties gets much higher.


2020 ◽  
Vol 842 ◽  
pp. 63-68
Author(s):  
Xiao Zhang ◽  
Jian Zheng ◽  
Yong Qiang Du ◽  
Chun Ming Zhang

Three-dimensional (3D) network structure has been recognized as an efficient approach to enhance the mechanical and thermal conductive properties of polymeric composites. However, it has not been applied in energetic materials. In this work, a fluoropolymer based composite with vertically oriented and interconnected 3D graphite network was fabricated for polymer bonded explosives (PBXs). Here, the graphite and graphene oxide platelets were mixed, and self-assembled via rapid freezing and using crystallized ice as the template. The 3D structure was finally obtained by freezing-dry, and infiltrating with polymer. With the increasing of filler fraction and cooling rate, the thermal conductivity of the polymer composite was significantly improved to 2.15 W m-1 K-1 by 919% than that of pure polymer. Moreover, the mechanical properties, such as tensile strength and elastic modulus, were enhanced by 117% and 563%, respectively, when the highly ordered structure was embedded in the polymer. We attribute the increased thermal and mechanical properties to this 3D network, which is beneficial to the effective heat conduction and force transfer. This study supports a desirable way to fabricate the strong and thermal conductive fluoropolymer composites used for the high-performance polymer bonded explosives (PBXs).


Sign in / Sign up

Export Citation Format

Share Document