scholarly journals SCREENING OF SOIL BACTERIA FOR PLANT GROWTH PROMOTION ACTIVITIES IN VITRO

2016 ◽  
Vol 4 (1) ◽  
pp. 27 ◽  
Author(s):  
Edi Husen

Fourteen isolates of soil bacteria, including two known plant growth promoting rhizobacteria (PGPR) strains, Azotobacter vinelandii Mac 259 and Bacillus cereus UW 85, were tested in vitro. Parameters assessed were indoleacetic acid (IAA) production, phosphate solubilization, dinitrogen fixation, and siderophore (Fe-III chelating agent) production. IAA production was assayed colorimetrically using ferric chlorideperchloric acid reagent. Phosphate-solubilization and siderophore production were tested qualitatively by plating the bacteria in Pikovskaya and chrome azurol S agar, respectively. The ability to fix dinitrogen was measured based on nitrogenase activity of the bacteria by gas chromatography. The results showed that twelve isolates produced IAA, ranged from 2.09 to 33.28 µmol ml-1. The ability to solubilize precipitated phosphate was positively exhibited by four isolates (BS 58, BTS, TCaR 61, and BTCaRe 65). Seven isolates including Mac 259 positively produced siderophore. None of the isolates showed nitrogenase activity. Only one isolate (TS 3) did not exhibit any of the traits tested. Isolate TCeRe 60 and reference strain Mac 259 were found to have IAA- and siderophore-producing traits. Four P-solubilizing bacteria (BS 58, BTS, TCaR 61, and BTCaRe 65) were also IAA- and siderophore-producing bacteria. Potential use of these PGPR isolates needs further test in enhancing plant growth.

2016 ◽  
Vol 4 (1) ◽  
pp. 27 ◽  
Author(s):  
Edi Husen

Fourteen isolates of soil bacteria, including two known plant growth promoting rhizobacteria (PGPR) strains, Azotobacter vinelandii Mac 259 and Bacillus cereus UW 85, were tested in vitro. Parameters assessed were indoleacetic acid (IAA) production, phosphate solubilization, dinitrogen fixation, and siderophore (Fe-III chelating agent) production. IAA production was assayed colorimetrically using ferric chlorideperchloric acid reagent. Phosphate-solubilization and siderophore production were tested qualitatively by plating the bacteria in Pikovskaya and chrome azurol S agar, respectively. The ability to fix dinitrogen was measured based on nitrogenase activity of the bacteria by gas chromatography. The results showed that twelve isolates produced IAA, ranged from 2.09 to 33.28 µmol ml-1. The ability to solubilize precipitated phosphate was positively exhibited by four isolates (BS 58, BTS, TCaR 61, and BTCaRe 65). Seven isolates including Mac 259 positively produced siderophore. None of the isolates showed nitrogenase activity. Only one isolate (TS 3) did not exhibit any of the traits tested. Isolate TCeRe 60 and reference strain Mac 259 were found to have IAA- and siderophore-producing traits. Four P-solubilizing bacteria (BS 58, BTS, TCaR 61, and BTCaRe 65) were also IAA- and siderophore-producing bacteria. Potential use of these PGPR isolates needs further test in enhancing plant growth.


2011 ◽  
Vol 201-203 ◽  
pp. 1023-1032
Author(s):  
Jian Feng Li ◽  
Shu Qing Zhang ◽  
Shang Li Shi ◽  
Ping Hui Huo ◽  
Li Yu Chen

The aim of this study was to evaluate the effect of Ampicillin as bacteriostats on the number of P solubilizing and antibiotic-anti-Rhizobium. meliloticells and contamination in inoculants during one year storage, and plant promotion ability of subgeneration cells of antibiotic-resistant phosphate-solubilizing R. meliloti strain LW107 growth on YMA plates containing different concentrations of ampicillin were also investigated. In the first experiment, 100 mg liter-1 ampicillin was added in inoculants, number of R.meliloticells and contamination in inoculants were investigated at two temperatures, using both liquid and peat based solid inoculants in experiment. Statistical design was a complete randomized block in a factorial 2×2×2 experimental arrangement with 4 replicates. Results show that there are various viable cells and contamination levels in inoculants. The ampicillin increased R.melilotiLW107 viable cells and inoculants stored at low temperature with lesser contamination when ampicillin been added. To clarify whether ampicillin affect the main character of R.melilotiLW107 cells, the ability of calcium phosphate solubilization and IAA production in ampicillin-containing conditions was determined. Results indicated that the ability of calcium phosphate solubilization and IAA production have no significant difference on 6th generation cells of R.melilotiLW107 between the growth plates and the lack of ampicillin. In the third experiment, the plant growth promotion of the ampicillin-containing inoculants on alfalfa seedlings was determined in sterile sand conditions in a temperature-controlled growth chamber at 20 -25°C for 35 days. We also found that no significant difference on nodule numbers between diluted liquids ampicillin-containing inoculants and the common liquid inoculants containing no ampicillin, but plant growth and efficiency of nitrogen-fixing responded to undiluted liquids inoculants containing ampicillin with a decrease in biomass and nitrogenase activity indicating that the five-fold dilutions of the ampicillin-containing inoculants are necessary for applications.


2022 ◽  
Vol 8 ◽  
Author(s):  
Mohammad Imran Mir ◽  
Bee Hameeda ◽  
Humera Quadriya ◽  
B. Kiran Kumar ◽  
Noshin Ilyas ◽  
...  

A diverse group of rhizobacteria persists in the rhizospheric soil, on the surface of roots, or in association with rice plants. These bacteria colonize plant root systems, enhance plant growth and crop yield. Indigenous rhizobacteria are known to promote soil health, grain production quality and serve as sustainable bioinoculant. The present study was aimed to isolate, identify and characterize indigenous plant growth promoting (PGP) diazotrophic bacteria associated with the rhizosphere of rice fields from different areas of Jammu and Kashmir, India. A total of 15 bacteria were isolated and evaluated for various PGP traits, antagonistic activity against phytopathogens, production of hydrolytic enzymes and biofilm formation under in-vitro conditions. The majority of the isolated bacteria were Gram-negative. Out of 15 bacterial isolates, nine isolates produced IAA (12.24 ± 2.86 to 250.3 ± 1.15 μg/ml), 6 isolates exhibited phosphate solubilization activity (36.69 ± 1.63 to 312.4 ± 1.15 μg/ml), 7 isolates exhibited rock phosphate solubilization while 5 isolates solubilized zinc (10–18 mm), 7 isolates showed siderophore production, 8 isolates exhibited HCN production, 6 isolates exhibited aminocyclopropane-1-carboxylate (ACC) deaminase activity, 13 isolates exhibited cellulase activity, nine isolates exhibited amylase and lipase activity and six isolates exhibited chitinase activity. In addition, 5 isolates showed amplification with the nifH gene and showed a significant amount of nitrogenase activity in a range of 0.127–4.39 μmol C2H4/mg protein/h. Five isolates viz., IHK-1, IHK-3, IHK-13, IHK-15 and IHK-25 exhibited most PGP attributes and successfully limited the mycelial growth of Rhizoctonia solani and Fusarium oxysporum in-vitro. All the five bacterial isolates were identified based on morphological, biochemical and 16S rDNA gene sequencing study, as Stenotrophomonas maltophilia, Enterobacter sp., Bacillus sp., Ochrobactrum haematophilum and Pseudomonas aeruginosa. Rice plants developed from seeds inoculated with these PGP strains individually had considerably higher germination percentage, seed vigor index and total dry biomass when compared to control. These findings strongly imply that the PGP diazotrophic bacteria identified in this work could be employed as plant growth stimulators in rice.


Author(s):  
Archana K. ◽  
Mallesha B. C.

Aim: The present study was aimed to estimate the quantity of IAA production and Phosphate solubilisation by the isolated yeasts from the leguminous crops. Place and Duration of Work: The experiments were carried out in the Department of Agricultural Microbiology, University of Agricultural Sciences, GKVK, Bengaluru during 2019-2020. Methodology: Yeasts were isolated from the leguminous crops such as Red gram, Cowpea, Green gram, Black gram and Bengal gram. Thirty-five yeast isolates were obtained using four media and were subjected to IAA production test and Phosphorus solubilisation by Spectrophotometry method. All the yeast isolates were subjected to the temperature tolerance test at 25, 30, 35 and 40°C. Results: Yeast isolate, CP15SI21 has found to produce the highest IAA under in vitro conditions 30.50 μg/ml and the lowest was found to be 17.16μg/ml by yeast isolate BG20SI29. 24 yeast isolates were found to produce above 20 μg/ml. In the case of Phosphate solubilisation highest was observed in GG7SI9 (25.70 mg/l) and lowest in BG6SI8 (1.20 mg/l). Seven isolates showed Phosphate solubilisation above 10 mg/l. At 35°C all the yeast isolates have shown very good growth compared to other lower temperatures. All the yeast isolates were found to grow in the media supplemented with micronutrients such as zinc and potassium. Conclusion: Our study highlights the potential of yeasts isolated from the leguminous crops that can help in plant growth promotion as the yeast isolates are capable of producing higher amounts of IAA. Some of the yeast isolates can solubilise phosphate under in vitro conditions which in turn helps in the utilization of unavailable P from soils thereby improves plant growth and tolerance to a higher temperature can alleviate abiotic stress.


2017 ◽  
Vol 37 (03) ◽  
Author(s):  
Meena . ◽  
Nayan Tara ◽  
Baljeet Singh Saharan

Brevibacterium frigrotolerans SMA23 is a gram positive rod shaped bacteria isolated from Aloe vera rhizosphere. 16S rRNA sequencing confirmed the identity of the bacterium as Brevibacterium frigrotolerans. It was capable of growing at temperatures ranging from 10°C to 35°C, but maximum growth was observed at 30°C. It is endowed with multiple plant growth promotion attributes such as phosphate solubilization, IAA production and siderophore production, which are expressed differentially at sub-optimal temperatures. At 10°C it was found to exhibit all the plant growth promotion attributes. This bacterial isolate was able to positively influence and promote the growth and nutrient uptake parameters of wheat (HD 2967) under glasshouse conditions.


2016 ◽  
Vol 63 (3) ◽  
pp. 191-207 ◽  
Author(s):  
Shikha Verma ◽  
Anurup Adak ◽  
Radha Prasanna ◽  
Shri Dhar ◽  
Harshwardhan Choudhary ◽  
...  

Legume–microbial interactions focus mainly on Rhizobium. The present study aimed to evaluate the plant growth-promoting (PGP) potential of bacterial and cyanobacterial formulations and variety-specific differences following their inoculation in two varieties of pea (Pisum sativum L.), namely Arkel and GP-17. Providencia sp. PW5–Anabaena laxa CW1 treatment was the most promising, with an 11%–76% increase in defense enzyme activity in both varieties. Interestingly, Arkel responded better in terms of nitrogenase activity, which was enhanced several-fold in the inoculated treatments, and exhibited a significant correlation (r = 0.787, 0.778, 0.755; p < 0.05) with shoot length, fresh weight and nodule number per plant, respectively. Nodule number was significantly correlated (r = 0.74, 0.81; p < 0.05) with PAL and PPO activity, respectively, and with microbial biomass carbon, alkaline phosphatase and dehydrogenase activity (r = 0.582, 0.538, 0.666; p < 0.05), respectively. Variety GP-17, however, responded better in terms of increasing the polysaccharide and glomalin content of soil. This study reveals the promise of co-inoculation of PGPRs (plant growth-promoting Rhizobacteria) as synergistic partners for improving plant growth mobilization of major nutrients in pea. However, there is a need to study root exudate patterns to identify promising microbe–variety combinations.


Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1166 ◽  
Author(s):  
Miguel Ayuso-Calles ◽  
Ignacio García-Estévez ◽  
Alejandro Jiménez-Gómez ◽  
José D. Flores-Félix ◽  
M. Teresa Escribano-Bailón ◽  
...  

Lettuce (Lactuca sativa L.) is a widely consumed horticultural species. Its significance lies in a high polyphenolic compound content, including phenolic acids and flavonols. In this work, we have probed the ability of Rhizobium laguerreae HUTR05 to promote lettuce growth, under in vitro and greenhouse conditions (both non-saline and saline conditions). This strain has shown several in vitro plant growth promotion mechanisms, as well as capacity to colonize lettuce seedlings roots. We have analyzed the effect of the rhizobacterium inoculation on mineral and bioactive compounds in lettuce, under greenhouse conditions, and found a rise in the content of certain phenolic acids and flavonoids, such as derivatives of caffeoyl acid and quercetin. The genome analysis of the strain has shown the presence of genes related to plant growth-promoting rhizobacteria (PGPR) mechanisms, defense from saline stress, and phenolic compound metabolism (such as naringenin-chalcone synthase or phenylalanine aminotransferase).


2017 ◽  
Vol 57 (2) ◽  
pp. 144-151 ◽  
Author(s):  
Arun Karnwal

AbstractThe use of plant growth promoting rhizobacteria is increasing in agriculture and gives an appealing manner to replace chemical fertilizers, pesticides, and dietary supplements. The objective of our research was to access the plant growth promotion traits ofPseudomonas aeruginosa,P. fluorescensandBacillus subtilisisolated from the maize (Zea maysL.) rhizosphere.In vitrostudies showed that isolates have the potential to produce indole acetic acid (IAA), hydrogen cyanide, phosphate solubilisation, and siderophore. RNA analysis revealed that two isolates were 97% identical toP. aeruginosastrain DSM 50071 andP. aeruginosastrain NBRC 12689 (AK20 and AK31), while two others were 98% identical toP. fluorescensstrain ATCC 13525,P. fluorescensstrain IAM 12022 (AK18 and AK45) and one other was 99% identical toB. subtilisstrain NCDO 1769 (AK38). Our gnotobiotic study showed significant differences in plant growth variables under control and inoculated conditions. In the present research, it was observed that the isolated strains had good plant growth promoting effects on rice.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 579
Author(s):  
Carmen Sanjuana Delgado-Ramírez ◽  
Rufina Hernández-Martínez ◽  
Edgardo Sepúlveda

Plant growth-promoting rhizobacteria are often utilized to improve crop health and productivity. Nevertheless, their positive effects can be hindered if they fail to withstand the environmental and ecological conditions of the regions where they are applied. An alternative approach to circumvent this problem is a tailored selection of bacteria for specific agricultural systems. In this work, we evaluated the plant growth promoting and pathogen inhibition activity of rhizobacteria obtained from the rhizosphere of Mariola (Solanum hindsianum), an endemic shrub from Baja California. Eight strains were capable of inhibiting Fusarium oxysporum in vitro, and thirteen strains were found to possess three or more plant-growth-promotion traits. Molecular identification of these strains, using 16 s rRNA partial sequences, identified them as belonging to the genera Arthrobacter, Bacillus, Paenibacillus, Pseudomonas, and Streptomyces. Finally, the effect of selected plant growth-promoting rhizobacteria (PGPR) strains on the growth and suppression of Fusarium wilt in tomato was evaluated. Results showed that these strains improved tomato plants growth under greenhouse conditions and reduced Fusarium wilt effects, as reflected in several variables such as length and weight of roots and stem. This work highlights the potential of native plants related to regionally important crops as a valuable source of beneficial bacteria.


Author(s):  
S. Kiruthika ◽  
M. Arunkumar

Background: The use of chemical fertilizers and pesticides raises concerns about environmental pollution, health hazards and the destruction of biotic groups that support plant growth. Plant growth-promoting rhizobacteria (PGPR) thrive in the rhizosphere of plants are the auspicious alternative for these chemicals. PGPR plays a critical role in plant growth and development, along with biocontrol activities. Methods: In this present study, two effective microbes, Bradyrhizobium japonicum and Bacillus subtilis were chosen and their ability to produce Indole Acetic acid (IAA) was determined. Optimization of IAA production was carried out in different cultural conditions. Further, in-vitro studies were carried out to analyze the effect of these bacteria on the growth of Vigna radiata. Results: Our investigations showed that both organisms have the potential to produce IAA under standard conditions. IAA production is maximum when using Bradyrhizobium japonicum with the supplement of Carboxymethyl cellulose and yeast extract as C and N source, respectively. L-Tryptophan concentration has a positive effect on production. Further, the application of bacterial cultures has shown more significant improvement in plant growth in terms of root and shoot length and weight of crop material. The current findings recommend that Bradyrhizobium japonicum can be a suitable organism for application as a plant growth promoter.


Sign in / Sign up

Export Citation Format

Share Document