scholarly journals HERITABILITAS, SUMBER GEN, DAN DURABILITAS KETAHANAN VARIETAS PADI TERHADAP PENYAKIT HAWAR DAUN BAKTERI/ Heritability, Gene Resource, and Durability of Rice Varieties Resistance To Bacterial Leaf Blight Disease

2017 ◽  
Vol 36 (2) ◽  
pp. 99
Author(s):  
Dini Yuliani ◽  
Wage Ratna Rohaeni

<p>Bacterial leaf blight (BLB) disease is one of the obstacles in increasing of rice production. The use of resistant varieties is an effective and easy to implement for farmers. This paper discusses the heritability and source of resistance genes of rice varieties against the BLB disease and strategies to maintain the durability of resistant varieties as one of the control efforts through plant breeding to supports the increasing of rice production. Assembling and development of resistant varieties play an important role in controlling BLB disease because it has a genetic resistance<br />mechanism that can be inherited to progeny level. Varieties with vertical resistance are easily broken by pathogens, so it is necessary to assembling of varieties with horizontal resistance. To obtain the resistant progeny to BLB disease in the assembly of varieties, the position of the resistant varieties should be played as a female parent that has a high specific joining power. The nature of resistance to BLB is from a population whose parent genes are derived from multiple cross results has higher heritability. The populations derived from a double-cross have multigenic resistance and have the potential to produce recombinant individuals resistant for prolonged periods (durable). The availability of durable resistant varieties become a key requirement in sustainable BLB disease control. This matter can be done by improving the resistance of varieties through the assembling of varieties with various sources of resistance such as wild rice, local rice, and introduced rice.</p><p>Keywords: Rice, varieties, resistance, bacterial leaf blight, durability, heritability</p><p> </p><p><strong>ABSTRAK</strong></p><p>Penyakit hawar daun bakteri (HDB) merupakan salah satu kendala dalam peningkatan produksi padi. Penggunaan varietas tahan merupakan cara pengendalian yang efektif dan mudah diterapkan petani. Tulisan ini membahas heritabilitas dan sumber gen ketahanan varietas padi terhadap penyakit HDB dan strategi mempertahankan durabilitas varietas tahan sebagai salah satu upaya pengendalian melalui pemuliaan tanaman mendukung upaya peningkatan produksi padi. Perakitan dan pengembangan varietas tahan berperan penting mengendalikan penyakit HDB, karena memiliki mekanisme ketahanan genetik yang dapat diwariskan kepada keturunannya. Varietas dengan ketahanan vertikal mudah dipatahkan oleh patogen, sehingga perlu upaya perakitan varietas dengan ketahanan horizontal. Untuk memperoleh keturunan tanaman padi yang tahan terhadap penyakit HDB dalam perakitan varietas, posisi tetua tahan sebaiknya diperankan sebagai tetua betina yang memiliki daya gabung khusus yang tinggi. Sifat ketahanan HDB dari populasi tetua yang mengandung gen dari hasil silang ganda memilliki heritabilitas lebih tinggi. Populasi turunan dari silang ganda memiliki ketahanan multigenik dan berpeluang menghasilkan individu rekombinan tahan untuk periode yang lama (durable). Ketersediaan varietas tahan yang durable menjadi syarat utama dalam pengendalian penyakit HDB secara berkelanjutan. Hal ini dapat dilakukan dengan perbaikan ketahanan varietas melalui perakitan varietas dengan berbagai sumber ketahanan, di antaranya padi liar, padi lokal, dan padi introduksi.</p><p>Kata kunci: Padi, varietas, ketahanan, hawar daun bakteri, durabilitas, heritabilitas</p>

2020 ◽  
Vol 20 (2) ◽  
pp. 43
Author(s):  
Nafisah Nafisah ◽  
Celvia Roza ◽  
Nani Yunani ◽  
Aris Hairmansis ◽  
Tita Rostiati ◽  
...  

<p class="abstrakinggris">Hundred of high yielding and bacterial leaf blight (<em>Xanthomonas oryzae</em> pv. <em>oryzae, Xoo</em>) resistant rice varieties released since the 1960s are important sources of genetic materials for exploring superior genotypes. The study aimed to evaluate the genetic resistance of 177 rice varieties to <em>Xoo</em> and their agronomic traits. The evaluations were conducted at the Indonesian Center for Rice Research Experimental Station during the wet season (December 2015-March 2016). The bacterial leaf blight resistance was evaluated for <em>Xoo</em> pathotypes III, IV, and VIII using the clipping method. The genetic variation among genotypes was categorized as low (0–10%), medium (10–20%), and high (&gt;20%), whereas the heritability was categorized as low (0-30%), medium (30-60%), and high (&gt;60%). The variability of resistance to <em>Xoo</em> pathotypes, grain yield, and spikelet fertility was low, while the variability of plant height, productive tiller number, filled grain, and total spikelet was medium, and the variability of unfilled grain number was high. The 29 varieties  were categorized as superior based on their agronomic traits or resistance to <em>Xoo</em> pathotypes. In conclusion, Batutegi and Fatmawati were superior in the total spikelet number, while Rojolele and Inpari 2 were supreme in the thousand-grain weight. Dodokan had a very short maturity, and Inpari 24, Conde, Kalimas, Angke, Inpari 17, and Inpara 8 had the highest resistance to <em>Xoo</em> pathotypes. The study implies that the identified rice superior genotypes could be used as genetic materials to design cross combinations for higher yield potential and BLB resistance varietal improvement.</p>


2020 ◽  
Vol 39 (1) ◽  
pp. 11
Author(s):  
Fatimah Fatimah ◽  
Joko Prasetiyono

<p>Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv oryzae (Xoo) is an important bacterial disease and very destructive to rice plant. BLB decreased rice production from 20%-30% up to 80%. Host-plant resistance is a cost-effective and environmentally safe approach to reduce yield loss. However the development of new rice variety by conventional selection would take several years. The genetic improvement in rice production considered as a vital program in order to ensure national food security. The availability of corresponding molecular marker makes it more precision and efficient by reducing the time required for selection. This present article highlights the molecular approach in breeding for BLB disease resistant rice varieties. In detail, it will be discussed the application of molecular marker assisted backcrossing and pyramiding gene resistance offered breeders to accelerate the rice breeding program for resistance to BLB. The pyramiding of three resistance BLB genes (xa5, Xa7, and Xa21and one gene (Xa4) as a background into two elite indica rice varieties, Ciherang and Inpari 13, was introduced successfully. The combining of conventional breeding, marker assisted backcrossing, disease evaluation, agronomic performance and yield has led the significant resistance of pyramid lines to Xoo Race III, IV and VIII in vegetative and generative phase while their yield potential was maintained (6-7 ton/ha). The current status of Ciherang-HDB and Inpari 13-HDB pyramid lines is the production of nucleoseeds and breeder seeds. This broad spectrum and durable resistance characteristic may help in controlling BLB disease in different region of Indonesia and it will facilitate the rice self-sustainability program.</p><p>Keywords: Rice, gene pyramiding, plant breeding, molecular marker.</p><p> </p><p><strong>Abstrak</strong></p><p>Penyakit hawar daun bakteri (HDB) yang disebabkan oleh Xanthomonas oryzae pv oryzae (Xoo) merupakan penyakit penting pada tanaman padi karena dapat menurunkan produksi padi rata-rata 20-30% bahkan dapat mencapai 80%. Penggunaan varietas tahan merupakan cara pengendalian yang paling efektif, ramah lingkungan, dan mudah dilakukan. Namun pengembangan varietas unggul baru melalui seleksi konvensional memerlukan waktu lebih lama. Perbaikan varietas padi perlu terus dikembangkan dalam mendukung ketahanan pangan dan kemandirian pangan nasional. Tersedianya marka molekuler membantu proses pemuliaan tanaman menjadi lebih presisi dan lebih efisien sehingga mengurangi waktu seleksi pada tanaman progeni. Tulisan ini memfokuskan pendekatan molekuler dalam pemuliaan varietas tahan penyakit HDB melalui piramida gen ketahanan untuk mempercepat progam pemuliaan padi tahan penyakit HDB. Kegiatan menggabungkan tiga gen ketahanan (xa5, Xa7, dan Xa21) dan satu gen (Xa4) sebagai background ke dalam padi varietas Ciherang dan Inpari-13 telah berhasil dilakukan. Melalui penggabungan beberapa pendekatan yaitu pemuliaan konvensional dan silang balik berbantu marka, evaluasi penyakit dan keragaan agronomi serta komponen hasil telah menunjukkan peningkatan ketahanan yang nyata pada galur-galur piramida Ciherang HDB dan Inpari-13 HDB pada tiga ras Xoo (Ras III, IV, dan VIII), baik pada fase vegetatif maupun generatif dengan potensi hasil tidak berbeda nyata dengan tetuanya (6-7 t/ha). Saat ini sudah diproduksi benih inti (NS) dan benih penjenis (BS) galur-galur piramida Ciherang HDB dan Inpari-13 HDB. Dengan demikian, galur-galur piramida memiliki spektrum yang luas dan mampu bertahan dalam jangka waktu lama sehingga dapat mengontrol penyakit HDB di berbagai wilayah Indonesia dan mendukung target pemerintah untuk mempertahankan swasembada beras secara berkelanjutan.</p><p>Kata kunci: Padi, piramida gen, pemuliaan tanaman, marka molekuler.<br /><br /></p><p> </p>


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0255470
Author(s):  
Phuong Nguyen Duy ◽  
Dai Tran Lan ◽  
Hang Pham Thu ◽  
Huong Phung Thi Thu ◽  
Ha Nguyen Thanh ◽  
...  

TBR225 is one of the most popular commercial rice varieties in Northern Vietnam. However, this variety is highly susceptible to bacterial leaf blight (BLB), a disease caused by Xanthomonas oryzae pv. oryzae (Xoo) which can lead to important yield losses. OsSWEET14 belongs to the SWEET gene family that encodes sugar transporters. Together with other Clade III members, it behaves as a susceptibility (S) gene whose induction by Asian Xoo Transcription-Activator-Like Effectors (TALEs) is absolutely necessary for disease. In this study, we sought to introduce BLB resistance in the TBR225 elite variety. First, two Vietnamese Xoo strains were shown to up-regulate OsSWEET14 upon TBR225 infection. To investigate if this induction is connected with disease susceptibility, nine TBR225 mutant lines with mutations in the AvrXa7, PthXo3 or TalF TALEs DNA target sequences of the OsSWEET14 promoter were obtained using the CRISPR/Cas9 editing system. Genotyping analysis of T0 and T1 individuals showed that mutations were stably inherited. None of the examined agronomic traits of three transgene-free T2 edited lines were significantly different from those of wild-type TBR225. Importantly, one of these T2 lines, harboring the largest homozygous 6-bp deletion, displayed decreased OsSWEET14 expression as well as a significantly reduced susceptibility to a Vietnamese Xoo strains and complete resistance to another one. Our findings indicate that CRISPR/Cas9 editing conferred an improved BLB resistance to a Vietnamese commercial elite rice variety.


2016 ◽  
Vol 5 (2) ◽  
pp. 63 ◽  
Author(s):  
Suparyono Suparyono ◽  
Sudir Sudir ◽  
Suprihanto Suprihanto

At present, bacterial leaf blight of rice caused by Xanthomonas oryzae pv. oryzae is highly damaging to rice production in Indonesia as most of the existing commercial rice varieties are susceptible to the existing  pathotypes of the bacteria. To solve  such problems, varietal rotation should be based on information on the existence and dominance of local pathotypes in a particular rice ecosystem. To obtain this information, a total of 117 isolates of X. oryzae pv. oryzae, collected from West Java, Central Java, and Yogyakarta, were evaluated for their pathotype variation on five differential rice varieties during the dry season of 2000. When disease severity was &lt; 10%, the reaction was classified as resistant (R) and when &gt; 11%, was susceptible (S). The data indicated that 3.42% of the isolates were pathotype III, 12.82% were pathotype IV, and 83.76% were pathotype VIII. In West Java, the bacterial pathotypes III, IV, and VIII were 4.94%, 14.81%, and 80.25%, respectively. In low elevation areas, 4.94%, 9.88%, and 45.68% were pathotypes III, IV, and VIII, respectively and in medium areas, 4.94% were pathotypes IV and 34.57% were pathotype VIII. In Central Java, no pathotype III was found, while pathotypes IV and VIII were as much as 4.52% and 90.48%, respectively. In low elevation areas, no pathotypes III was recovered, and a total of 9.53% and 76.19% were identified as pathotypes IV and VIII, respectively, and in medium areas only pathotype VIII (14.29%) was identified. In Yogyakarta, pathotypes IV and VIII were found. In low elevation areas, 6.67% and 93.33% were pathotypes IV and VIII, respectively and in medium areas, 14.29% and 85.71% were pathotypes IV and VIII, respectively. The data indicated that variation in pathotype composition over different locations was obvious and locally specific resistant varieties to the disease are needed in the management of this important bacterial disease in rice.


2018 ◽  
Vol 35 (1) ◽  
pp. 113-120
Author(s):  
A. Acharya ◽  
N. R. Adhikari ◽  
R. B. Amgain ◽  
A. Poudel ◽  
R. Yadav ◽  
...  

 Bacterial blight disease of rice is a growing and challenging concern in Nepal. Since bacterial pathogen (Xanthomonas oryzae pv. oryzae) is difficult to manage by other means effectively, development of host plant resistance is the most effective mean to control this disease. This study was carried out to identify the bacterial leaf blight resistant genotypes of rice by using of molecular markers linked with bacterial blight resistant genes. Sixty genotypes of rice were screened at glass house for BB resistance and they were tested for the presence of Xa4, Xa5, Xa7 and Xa21 genes using markers MP, RM122, M5 and pTA248 respectively. IRBB 60 and Jumli Marshi were used as resistant and susceptible check respectively. Twenty five genotypes of rice were detected with presence of Xa4 gene, 24 genotypes with Xa5 gene and fourteen genotypes with Xa7 gene. Twenty four genotypes did not showed presence of any gene. Twenty four genotypes showed the presence of more than one gene with the specific molecular markers. Almost all genotypes that did not show presence of any gene were found highly susceptible in greenhouse conditions with both inoculums. Genotypes having more than one BB resistance gene were found resistant in greenhouse conditions with both inoculums suggesting combination of BB resistance gene through gene pyramiding will provide BB resistant varieties in rice breeding.


2009 ◽  
Vol 9 (2) ◽  
pp. 168-173
Author(s):  
Heru Adi Djatmiko ◽  
Fatichin Fatichin

Resistance of twentyone rice varieties to Bacterial Leaf Blight.  Bacterial leaf blight is one of the most important diseases of rice plants.  Resistant Variety is one of safe, effective, and environment friendly alternative controls to suppress the bacterial leaf blight on rice.  The objectives of this research were to find the most resistant varieties against bacterial leaf blight, and to study the yield of inoculated rice varieties. The research was carried out experimentally. This experiment was arranged in Randomized completely block design with 22 treatments and three replicates. Varieties of IR64 as control for susceptible varieties. Observed Variables were incubation period, disease intensity, seed weight per panicle, and seed weight per hills.  The result of this research showed that variety IR 70 was the most resistant variety to bacterial leaf blight. Variety having highest yield was Rojolele with seed weight per hill was 31.17 g.


2016 ◽  
Vol 12 (3) ◽  
pp. 89
Author(s):  
Andi Khaeruni ◽  
Erwin Najamuddin ◽  
Teguh Wijayanto ◽  
Syair Syair

Bacterial leaf blight disease caused by Xanthomonas oryzae pv. oryzae is an important rice disease in Indonesia, including in South East Sulawesi. The use of resistant varieties is one of the effective and environmentally friendly control strategies to suppress the disease. This study aimed to determine the level of resistance of some local rice varieties of South and Southeast Sulawesi against Xanthomonas oryzae pv. oryzae pathotypes IV, VIII and X. The study was conducted in a screen house involving 3 bacterial pathotypes and 11 local rice cultivars. Shearing method was used for inoculation of bacteria to leaf on vegetative and generative phases. Disease incidences were measured 3 weeks after inoculation, and the data was further used to determine the level of resistance of the tested rice cultivars. The results showed that incubation period of the disease was longer on Kelaca cultivar compared to other cultivars. On vegetative phase, this cultivar showed moderate resistant to pathotypes IV and X, and highly resistant to patotype VIII, whereas on the generative phase it showed moderate resistant to pathotypes IV and VII, and highly resistant to pathotype X. Therefore, Kelaca cultivar can be recommended for endemic areas of leaf blight in South and Southeast Sulawesi


2021 ◽  
Author(s):  
Madhusudan N ◽  
Beulah P ◽  
VEERENDRA JALDHANI ◽  
Nagaraju P ◽  
Manasa Y ◽  
...  

Abstract Phosphorus (P) is one of the macro nutrients essential for plant growth and development. Rice (Oryza sativa L.) is sensitive to P starvation and its deficiency influences many key plant functions which results in crop yield penalty. Although the hybrid rice segment is well-known for its yield heterosis, P deficiency and bacterial leaf blight (BLB) diseases are the evident limitations. APMS6B, the female parent of DRRH-3 is susceptible to low P and bacterial blight disease. In the present study, the improvement of APMS6B to P starvation and resistance to bacterial leaf blight (BB) was carried out using marker-assisted backcross breeding (MABB) approach. Kasalath (+ Pup1 QTL) was used as donor and a promising IL (ATR 594-1) at BC1 F4 generation was identified with 81.15% RPGR. Concurrently, this IL was intercrossed with GU-2 (+ Xa21 and Xa38 ). Hybridity of Intercross F1s (ICF1) was confirmed through foreground selection having maximum RPGR (88.29%) and were selfed to produce ICF2. The resultant progenies were phenotyped for BB using Xoo inoculum (IX-020), simultaneously genotyped with gene specific functional SSR markers for Xa21 and Xa38. The identified BB resistant plants were subjected to foreground selection for Pup1. Four promising ICF3 plants (BP-10-1, BP-10-3, BP-10-5 and BP-10-15 with Xa21, Xa38 and Pup1) along with parents and checks were screened both in low P plot (<2 kg P2O5 ha-1 ) as well as in normal plot (>25 kg P2O5 ha-1) during dry and wet seasons 2018. Based on the field evaluation, four promising intercrossed lines were identified with better root architecture in terms of root length and root volume. In addition, less % reduction in grain yield (39.10%) under P starvation and less susceptibility indices values (<1) for BB were observed. These lines may be utilized in the CMS conversion programme and development of climate resilient, biotic and abiotic tolerant rice hybrids.


2016 ◽  
Vol 44 (2) ◽  
pp. 126
Author(s):  
Ermelinda Maria Lopes Hornai ◽  
Bambang Sapta Purwoko ◽  
Willy Bayuardi Suwarno ◽  
Dan Iswari Saraswati Dewi

ABSTRACT<br /><br />Hybrid rice varieties  is an alternative technology to improve  productivity of low land rice. The results of previous studies have identified and found the male sterile lines Wild Abortive type and Kalinga are resistant to bacterial leaf blight pathotype III, IV and VIII. The objectives of the research were to obtain information on agronomic characters, yield evaluation, genetic parameters, and repeatability information. The experiment was conducted in two locations namely  Muara and Indramayu experimental stations. The design used was a Randomized Complete Block Design with three replication at each site.  Each replicate consisted of 17 hybrid rice and three check varieties. The results from locations showed that genotype BI485A/BP1 (IR53942) has the highest yield of 5.8 ton ha-1. The coefficient of genetic and phenotypic diversity of six agronomic characters was low. The repeatability for seven character observed were low, except for days to flowering. The  scoring value  of bacterial leaf blight disease in Indramayu showed that nine genotypes exhibit resistance.<br /><br />Keywords: cytoplasmic male sterile lines, disease resistance <br /><br />


Sign in / Sign up

Export Citation Format

Share Document