Deepwater debrites and linked megaturbidites in confined basins: An example from the Onnuri Basin, East Sea of Korea

2021 ◽  
Vol 91 (1) ◽  
pp. 1-20
Author(s):  
Deniz Cukur ◽  
In-Kwon Um ◽  
Jong-Hwa Chun ◽  
Gwang-Soo Lee ◽  
Gee-Soo Kong ◽  
...  

ABSTRACT We analyzed data from seven piston cores, multi-channel seismic-reflection (MCS) and chirp profiles, and multibeam echosounder (MBES) data to study the distribution, emplacement time, sedimentary facies, and depositional processes of sediment-gravity-flow deposits in the Onnuri Basin, a confined basin in the East Sea. These data reveal that debris flows have traveled ca. 30 km downslope, forming a seismic facies consisting of stacked, wedge-shaped, transparent units separated by high-amplitude continuous reflectors. Analysis of piston cores shows three distinct sedimentary units, throughout the basin. The lowest unit, I, is a debrite containing numerous mud clasts of varying size and color distributed in a mud-rich matrix; it is absent over elevated basinal highs or ridges, such as the Onnuri Ridge, suggesting that local topography controls its distribution. The debrite forms a recognizable acoustically transparent layer on subbottom chirp profiles (av. 7 m thick), covers approximately 500 km2, and has an estimated volume of ∼ 3.5 km3. The overlying unit, II, contains normally graded beds composed of massive sand, laminated and cross-laminated sand and silt, and a thick cap of structureless mud. This unit is interpreted to be a megaturbidite deposited from turbidity currents that originated from the flow transformation of debris flows on the upper continental slope. The megaturbidite covers the entire basin (at least 650 km2), and has an average thickness of 2.8 m (maximum thickness of 4.35 m), and comprises a volume of 1.8 km3. Variations in grain size and sedimentary structures suggest that the megaturbidite was deposited by progressively waning flows that reflected off basin flanks and ridges. The thick (up to 3.65 m) structureless mud cap further indicates deposition in a confined basin. The sharp basal contact, together with the lack of hemipelagic sediments between debrite and overlying megaturbidite, suggest that both were deposited during the same flow event, likely to have originated from a single catastrophic slope failure. Collapsing slide material evolved into a debris flow, from which a turbidite formed by dilution of the debris flow. Radiocarbon dates suggest that the slope failure occurred about 13–11 ka, a time when sea level was ca. 50 m lower than at the present day. Hemipelagic sediments in the topmost unit, III-2, above the megaturbidite indicate that the basin has been stable since ca. 11 ka. We provide robust evidence that submarine slope failures evolve downslope into slides, debris flows, and finally, thick megaturbidites. This contribution highlights the importance of seafloor morphology on the distribution and stratigraphy of submarine flows in confined basins.

JOIDES drilling results provide new evidence concerning facies patterns on evolving passive margins that strengthens and extends hypotheses constructed from studies of morphology, seismic reflexion data and shallow samples on modern margins, and from field geologic studies of uplifted ancient margins. On the slopes and rise, gravity-controlled mechanisms - turbidity currents, debris flows, slides and the like - play the dominant role in sediment transport over the long term, but when clastic supplies are reduced, as for example during rapid transgressions, then oceanic sedimentation and the effects of thermohaline circulation become important. Sedimentary facies models used as the basis of unravelling tectonic complexities of some deformed margins, for example in the Mesozoic Tethys, may be too simplistic in the light of available data from modern continental margins.


1996 ◽  
Vol 22 ◽  
pp. 194-199 ◽  
Author(s):  
Ellen A. Cowan ◽  
Paul R. Carlson ◽  
Ross D. Powell

The advance of Hubbard Glacier, near Yakutat, Alaska, U.S.A., in spring 1986 blocked the entrance to Russell Fiord with an ice-and-sediment dam, behind which a lake formed. The water level in Russell Lake rose to 25.5 m a.s.l. The dam catastrophically failed in October 1986, releasing 5.4 km3of water into Disenchantment Bay. High-resolution seismic-reflection profiles show a 7.5 km long channel system cut into and buried by glacimarine sediment, represented by continuous, parallel reflections. The chaotic seismic facies filling the channel is interpreted to be debris flow deposits. A gravity core from channel-overbank deposits contained sandy diamicton with mud clasts. Above the channel a 1–2 m thick sediment drape extends across the bay. Laminated mud, fining-upward sand beds and diamicton were recovered from this unit. The sediment-drape deposits were produced by suspension settling from turbid plumes and non-channelized turbidity currents generated by the outburst flood.


2021 ◽  
Author(s):  
Bruna Teixeira Pandolpho ◽  
Antonio Henrique da Fontoura Klein ◽  
Isadora Dutra ◽  
Michel M. Mahiques ◽  
Adriano R. Viana ◽  
...  

<p>A new mixed turbidite-contourite system is described in the northern Campos Basin, southeastern Brazilian margin. This system is developed in a middle slope setting and was formed through non-synchronous interaction between the turbidity current and a contour current in the same stratigraphic interval (Miocene). Different depositional cycles were accounted based on their diagnostic seismic features. Seismic attributes, seismic facies, and isochron maps were used to identify alternating cycles of downslope and alongslope processes in the study area, along with the intermediate stage with features from both processes (mixed system). Seismic units were then associated with the dominant type of current. Depositional processes resulted from alongslope current activity can be distinguished from the downslope current activity, based on the acoustic characteristics (root-mean-square (RMS) amplitude values), internal architecture, and external geometry pattern. While alongslope currents deposits consist of mainly low RMS amplitude values clinoforms with an alongslope trend; the downslope gravity deposits present high-amplitude or chaotic seismic facies, usually higher values of RMS amplitude, channel or channel-lobe features, erosive surfaces, and a basinward depositional trend. The first and oldest seismic unit (S1) was interpreted as a dominantly alongslope system, with aggrading sigmoidal clinoforms and high-frequency, low-amplitude reflections commonly associated with fine-grained sedimentary deposits, typical of a plastered drift. Basinward mass transport deposit derived from previous drift instability are often identified. Seismic unit S2 represents the intermediate stage where both gravity-driven and along-slope currents act asynchronously. It is referred to as a mixed turbidite-contourite sequence that shows high-amplitude sediment waves migrating upslope and a moat feature carved in its upslope front. The interfingering between high- and low-amplitude reflectors, distal chaotic facies, together with sediment waves and a channel moat, points to a sand-rich deposit reworked by northward-flowing contour currents. Seismic units S3 and S4 show downslope features with chaotic facies (S3) and paleochannels with coarse basal lag deposits interpreted after the high RMS amplitude values (S4). In S4, a series of long-lived submarine channels formed. The last seismic unit, S5, referred to as the second plastered drift sequence, is marked by low-amplitude clinoforms that thin basinward. Important information on the paleocurrents' direction was also made based on the final deposits display (e.g. terraces, sediment waves, paleochannels), where a northward-flowing bottom current was assumed. Research on alternating dominant processes and transitional stages or mixed depositional systems may provide a better understanding of deep-water depositional processes. Because these processes do not always fit previous depositional models that are mainly described for synchronous systems, new insights on cyclic non-synchronous mixed systems can improve our understanding of how mixed systems are organized through time and space. We can also determine which were the dominant processes that controlled the sedimentation by indicating periods where the margin was mostly submitted to sediment transfer from continent to the basin and periods where the oceanic currents prevailed by redistributing sediments along the isobaths and replacing the axis of downslope transfer conduits. Setting new models on cyclic deposits and intermediate stages can have a future economic impact on potential hydrocarbon reservoir architecture.</p>


2018 ◽  
Vol 6 (4) ◽  
pp. SO1-SO15 ◽  
Author(s):  
Yintao Lu ◽  
Wei Li ◽  
Shiguo Wu ◽  
Bryan T. Cronin ◽  
Fuliang Lyu ◽  
...  

Two isolated Neogene carbonate platforms (Xisha and Guangle carbonate platforms) have developed in the rifted uplifts since the Early Miocene. A large-scale submarine canyon system, the Zhongjian Canyon (ZJC), has developed in the tectonic depression between the two platforms since the Middle Miocene. High-resolution bathymetry data and 2D and 3D seismic data reveal the existence of the ZJC on the present seafloor, as well as in Neogene intervals. It exhibits typical characteristics of deepwater canyons that cut the surrounding rocks and indicate strong erosional features. The ZJC resulted from northwest–southeast strike-slip fault activities during synrift and postrift stages, and it periodically grew during the development of carbonate platforms since the Middle Miocene. We identified four cycles of parallel to subparallel high amplitude and dim reflectors in seismic data, which we interpreted as alternating canyon fill, based on the interpretation of seismic facies. Thus, the sedimentary evolution of the ZJC can be divided into four typical stages, which were in the Middle Miocene, Late Miocene, Early Pliocene, and Pleistocene. Considering the tectonic background of the carbonate platforms, as well as the on-going igneous activities, the sediment filling the canyon could be derived from a mixture of carbonate clasts, igneous clasts, mud, and silt. The laminar high-amplitude reflectors and dim-reflector package represented a fining-upward sedimentary cycle. The coarse-grained sediment in canyon fillings could be turbidites, carbonate debrites, and even igneous clasts. In contrast, the fine-grained sediment is likely to be dominated by pelagic to hemipelagic mud, and silt. This case study describes a deepwater canyon under a carbonate-dominated sedimentary environment and has significant implications for improving our knowledge of periplatform slope depositional processes. Furthermore, the insight gained into periplatform slope depositional processes can be applied globally.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xiaoying He ◽  
Zeqing Yu ◽  
John M. Kemeny ◽  
Ann Youberg ◽  
Yunkun Wang

Our understanding of debris-flow initiation by slope failure is restricted by the challenge of acquiring accurate geomorphic features of debris flows and the structural setting of the rock mass in the remote mountainous terrain. Point cloud data of debris flows in Sabino Canyon, Tucson, Arizona, July 2006, with initiation by joint-controlled rock slope were obtained using multitemporal LiDAR scanning. Topographic changes were detected by comparing historical LiDAR scanning data of this area since 2005 by adopting open-source CloudCompare software. The results showed persistent scour and erosion in the debris flows after 2006. Point cloud data of joint-controlled rock in the initiation zone were generated by the means of photogrammetry using Pix4D software. The joint planes, the dip direction and the dip value of the joint plane, the joint spacing, and the joint roughness were therefore acquired by point cloud processing. Our study contributes a foundation for analyzing the relationship between the rock features, the generation of slope failure, and the initiation of debris flows.


2002 ◽  
Vol 52 (1) ◽  
pp. 91-105 ◽  
Author(s):  
John T. Andrews ◽  
M. Kirby ◽  
Anne E. Jennings ◽  
D. C. Barber

AbstractIn order to describe ice sheet/ocean interactions at the NE margin of the Laurentide Ice Sheet over 40 radiocarbon dates have been obtained on foraminifera from nine, 2.5 to 11 m piston cores from the slope of SE Baffin Island. The cores were collected off Cumberland Sound and north of Hudson Straitfrom 750 to 1 510 m waterdepth. Rates of sediment accumulation varied between 20 and 40 cm/ky. Six cores contain high-resolution records of events during Marine Isotope Stage (MIS) 2 and parts of 1 and 3, whereas three cores have core top dates of ≥30 ka and thus provide information on MIS 3 and possibly 4/5. The cores include three main facies: Lithofacies A - yellowish/buff detrital carbonate-rich sediment, also referred to as Detrital Carbonate (DC-) events; Lithofacies B - olive-green detrital carbonate-poor sediment; and Lithofacies C - a black sedimentary unit. The lithofacies represent changes in glacial sources, ice sheet proximity, and processes of deposition. We conclude that there are DC- events correlative with Heinrich events H-1, H- 2, and H-4 in the North Atlantic; however, we find no compelling evidence for a DC-layer during H-3 (ca. 27 ± ka). There are three to four distinct DC- events after H-4 (ca.35 ± ka) but their exact ages are difficult to determine. Grain-size spectra and X-radiographs show that the DC-sediments are stratified to massive silty-clays with little sand, but generally have higher sand percentages at the base. DC-layers were deposited in part from turbidity currents, melting of icebergs, and rain-out of fine-grained silts and clays. In contrast, ice distal sediments in the eastern North Atlantic recorded H-events as an abrupt increase in ice rafted sand-size particles. In our study area, H-layer thicknesses vary from 0 and 70 cm for H-1 and 20 to 90 cm for H-2; H-4 is ≥60 to 100 cm thick. Over the total length of our records, the sedimentary conditions have been dominated by hemipelagic deposition (lithofacies B), implying that those times when ice reached the shelf (lithofacies A and C) have been short.


1996 ◽  
Vol 22 ◽  
pp. 194-199 ◽  
Author(s):  
Ellen A. Cowan ◽  
Paul R. Carlson ◽  
Ross D. Powell

The advance of Hubbard Glacier, near Yakutat, Alaska, U.S.A., in spring 1986 blocked the entrance to Russell Fiord with an ice-and-sediment dam, behind which a lake formed. The water level in Russell Lake rose to 25.5 m a.s.l. The dam catastrophically failed in October 1986, releasing 5.4 km3 of water into Disenchantment Bay. High-resolution seismic-reflection profiles show a 7.5 km long channel system cut into and buried by glacimarine sediment, represented by continuous, parallel reflections. The chaotic seismic facies filling the channel is interpreted to be debris flow deposits. A gravity core from channel-overbank deposits contained sandy diamicton with mud clasts. Above the channel a 1–2 m thick sediment drape extends across the bay. Laminated mud, fining-upward sand beds and diamicton were recovered from this unit. The sediment-drape deposits were produced by suspension settling from turbid plumes and non-channelized turbidity currents generated by the outburst flood.


Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1698
Author(s):  
Abiola Abraham Adebiyi ◽  
Peng Hu

Debris flows tend to erode sediment from or deposit sediment on the bed, which changes their volume and, thus, in turn, affects their rheological properties. However, previous modeling studies on debris flows mostly ignore sediment erosion/deposition. Here, three models are presented: a debris model without bed deformation, which is similar to traditional models in that it does not consider sediment erosion/deposition but uses the Herschel–Bulkley formulation to describe the non-Newtonian nature; a debris model with bed deformation, which is better improved than the traditional model in that it considers sediment erosion/deposition; and a turbidity current model, which is further simplified from the debris model with bed deformation by ignoring the non-Newtonian nature. These models, formulated in the same modeling framework, are solved by a shock-capturing finite volume method. These models were firstly validated against three laboratory experiments, which indicated that the debris models with and without bed deformation with reasonably well-specified parameters can give satisfactory agreements with the measurements, whereas the turbidity current model overestimated the experimental result due to its lack of yield stress and dynamic viscosity. Moreover, a hypothetical field application was used to explain the difference between a turbidity current and debris flows with and without bed deformation. It was shown that debris flows and turbidity currents are capable of impacting the bed significantly. However, turbidity currents have thinner tails, less shear stress, and form horizontal deposits on the bed, while debris flows have a thicker tail, high shear stress, and form vertical deposits on the bed. Finally, sensitivity analyses were carried out to study the impact of sediment size, bed slope, concentration, and porosity on the deformation of the bed after debris flow where they all showed a positive correlation.


2018 ◽  
Vol 49 (1) ◽  
pp. 42-51
Author(s):  
Francesco Bettella ◽  
Tamara Michelini ◽  
Vincenzo D'Agostino ◽  
Gian Battista Bischetti

Debris flows are one of the most common geomorphic processes in steep mountainous areas. The control of their propagation on alluvial fans is fundamental; valley bottoms are usually characterised by high damage potential because they contain concentrations of inhabitants and infrastructure. It is well known that forests have a protective function in that they reduce the triggering of debris flows, as well as hinder their motion and promote deposition, but a quantitative assessment of these effects is still lacking. Using laboratory experiments that simulate debris-flow depositional processes, this research investigated the ability of forests to reduce debris-flow runout and depositional area. The experiments considered two different forest types, high forests and coppice forests, and four volumetric concentrations of sediment (0.50, 0.55, 0.60, and 0.65). The results confirmed that the sediment concentration of the flow is a key factor in determining the geometry of the deposits. On the other hand, forests can reduce debris-flow runout distance and, in general terms, affect the characteristics of their deposits. The results showed that vegetation appear to reduce debris-flow motion especially when the debris-flow kinematic load at the fan apex is low. About the sediment concentration of the mixture, high forest did not exhibit a clear behaviour while coppice forest appears to promote significant deposition at all of the tested concentrations, and this effect increases with the solid concentration (reductions in runout between approximately 20% and 30% at CV=0.50 and CV=0.65, respectively, were observed). Due to their higher tree density, in fact, coppice forests seem to have a better protective effect than the rigid trunks of high forest trees. For this last type of forest, a relationship between the H/L ratio, which represents energy dissipation, have been found and compared with the scenario without forest.


2021 ◽  
Vol 91 (9) ◽  
pp. 986-1009
Author(s):  
Jaco H. Baas ◽  
Niall D. Tracey ◽  
Jeff Peakall

ABSTRACT Deposits of sediment gravity flows in the Aberystwyth Grits Group (Silurian, west Wales, United Kingdom) display evidence that sole marks are suitable for reconstructing depositional processes and environments in deep-marine sedimentary successions. Based on drone imagery, 3D laser scanning, high-resolution sedimentary logging, and detailed descriptions of sole marks, an outcrop 1600 m long between the villages of Aberarth and Llannon was subdivided into seven lithological units, representing: a) mudstone-poor, coarse-grained and thick-bedded submarine channel fills, dominated by the deposits of erosive high-density turbidity currents with flute marks; b) mudstone-rich levee deposits with thin-bedded, fine-grained sandstones formed by low-density turbidity currents that scoured the bed to form flute marks; c) channel–lobe transition-zone deposits, dominated by thick beds, formed by weakly erosive, coarse-grained hybrid events, with pronounced mudstone-rich or sandstone-dominated debritic divisions and groove marks below basal turbiditic divisions, and with subordinate amounts of turbidites and debris-flow deposits; d) tabular, medium- to thick-bedded turbiditic sandstones with flute marks and mixed sandstone–mudstone hybrid event beds mainly with groove marks, interpreted as submarine lobe-axis (or off-axis) deposits; and e) tabular, thin- to medium-bedded, fine-grained, mainly turbiditic sandstones mostly with flute marks, formed in a lobe-fringe environment. Both lobe environments also comprised turbidites with low-amplitude bed waves and large ripples, which are interpreted to represent transient-turbulent flows. The strong relationship between flute marks and turbidites agrees with earlier predictions that turbulent shear flows are essential for the formation of flute marks. Moreover, the observation as part of this study that debris-flow deposits are exclusively associated with groove marks signifies that clay-charged, laminar flows are carriers for tools that are in continuous contact with the bed. A new process model for hybrid event beds, informed by the dominance of tool marks, in particular grooves, below the basal sand division (H1 division of Haughton et al. 2009) and by the rapid change from turbidites in the channel to hybrid event beds in the channel–lobe transition zone, is proposed. This model incorporates profound erosion of clay in the channel by the head of a high-density turbidity current and subsequent transformation of the head into a debris flow following rapid lateral flow expansion at the mouth of the channel. This debris flow forms the groove marks below the H1 division in hybrid event beds. A temporal increase in cohesivity in the body of the hybrid event is used to explain the generation of the H1, H2, and H3 divisions (sensuHaughton et al. 2009) on top of the groove surfaces, involving a combination of longitudinal segregation of bedload and vertical segregation of suspension load. This study thus demonstrates that sole marks can be an integral part of sedimentological studies at different scales, well beyond their traditional use as indicators of paleoflow direction or orientation.


Sign in / Sign up

Export Citation Format

Share Document