scholarly journals Sole marks reveal deep-marine depositional process and environment: Implications for flow transformation and hybrid-event-bed models

2021 ◽  
Vol 91 (9) ◽  
pp. 986-1009
Author(s):  
Jaco H. Baas ◽  
Niall D. Tracey ◽  
Jeff Peakall

ABSTRACT Deposits of sediment gravity flows in the Aberystwyth Grits Group (Silurian, west Wales, United Kingdom) display evidence that sole marks are suitable for reconstructing depositional processes and environments in deep-marine sedimentary successions. Based on drone imagery, 3D laser scanning, high-resolution sedimentary logging, and detailed descriptions of sole marks, an outcrop 1600 m long between the villages of Aberarth and Llannon was subdivided into seven lithological units, representing: a) mudstone-poor, coarse-grained and thick-bedded submarine channel fills, dominated by the deposits of erosive high-density turbidity currents with flute marks; b) mudstone-rich levee deposits with thin-bedded, fine-grained sandstones formed by low-density turbidity currents that scoured the bed to form flute marks; c) channel–lobe transition-zone deposits, dominated by thick beds, formed by weakly erosive, coarse-grained hybrid events, with pronounced mudstone-rich or sandstone-dominated debritic divisions and groove marks below basal turbiditic divisions, and with subordinate amounts of turbidites and debris-flow deposits; d) tabular, medium- to thick-bedded turbiditic sandstones with flute marks and mixed sandstone–mudstone hybrid event beds mainly with groove marks, interpreted as submarine lobe-axis (or off-axis) deposits; and e) tabular, thin- to medium-bedded, fine-grained, mainly turbiditic sandstones mostly with flute marks, formed in a lobe-fringe environment. Both lobe environments also comprised turbidites with low-amplitude bed waves and large ripples, which are interpreted to represent transient-turbulent flows. The strong relationship between flute marks and turbidites agrees with earlier predictions that turbulent shear flows are essential for the formation of flute marks. Moreover, the observation as part of this study that debris-flow deposits are exclusively associated with groove marks signifies that clay-charged, laminar flows are carriers for tools that are in continuous contact with the bed. A new process model for hybrid event beds, informed by the dominance of tool marks, in particular grooves, below the basal sand division (H1 division of Haughton et al. 2009) and by the rapid change from turbidites in the channel to hybrid event beds in the channel–lobe transition zone, is proposed. This model incorporates profound erosion of clay in the channel by the head of a high-density turbidity current and subsequent transformation of the head into a debris flow following rapid lateral flow expansion at the mouth of the channel. This debris flow forms the groove marks below the H1 division in hybrid event beds. A temporal increase in cohesivity in the body of the hybrid event is used to explain the generation of the H1, H2, and H3 divisions (sensuHaughton et al. 2009) on top of the groove surfaces, involving a combination of longitudinal segregation of bedload and vertical segregation of suspension load. This study thus demonstrates that sole marks can be an integral part of sedimentological studies at different scales, well beyond their traditional use as indicators of paleoflow direction or orientation.

2020 ◽  
Author(s):  
Xin Shan ◽  
Xing-He Yu ◽  
Lina Jin ◽  
Ya-Long Li ◽  
Cheng-Peng Tan ◽  
...  

AbstractSubmarine or sub-lacustrine lobe deposits are important reservoirs, but the fan fringe deposits form heterogeneities within deep water fan deposits. Fan fringe facies records the complex sediment gravity flow types. By understanding of the bed types and flow mechanisms, we can identify the fan fringe deposit, which aids in the reconstruction of deep water fan and reservoir evaluations. The Jiucaiyuanzi and Dalongkou sections in the West Bogda Mountains preserve well-exposed 536-m and 171-m thick successions, respectively, of a deep water lacustrine depositional system from the Middle Permian Lucaogou Formation. Bed types of the Lucaogou Formation include high-density turbidite, low-density turbidite, incomplete Bouma-type turbidite, hybrid event beds, and slump deposits. The Lucaogou Formation is interpreted here as a fan fringe facies due to the thin bed thickness that characterize turbidites and hybrid event beds, as well as the predominance of the isolated sheet architecture. Previous studies suggest that these deposits were considered as deposited in a deep water setting due to the absence of wave-related structures. The presence of abundant mud clasts in massive medium-coarse grained sandstone beds reflects the significant erosional capability and interactions between high-density turbidity currents and lake floor. The fan fringe facies here contains amalgamated and thick-bedded homolithic facies (~ 30%) and thin-bedded heterolithic facies (~ 70%). The examination of the bed type is of wider significance for facies prediction and reservoir heterogeneity in the sub-lacustrine fan fringe facies.


2021 ◽  
Vol 72 (3) ◽  
Author(s):  
Serdar Akgündüz ◽  
Hayrettin Koral

The Thrace Basin consists of Paleogene–Neogene deposits that lie in the lowland south of the Strandja highlands in NW Turkey, where metagranitic and metasedimentary rocks occur. The Akalan Formation consisting of colluvial fan/debris flow deposits represents the base of the sequence in the northern Thrace basin where it is bounded by a right lateral strike-slip oblique fault called “The Western Strandja Fault Zone”. This formation exhibits a coarse-grained, angular and grain-supported character close to the fault zone which has releasing-bends. Fine-grained, rounded, and matrix-supported sediments occur away from the contact. During this study, the Akalan Formation is described for the first time as having larger benthic foraminifera (LBF) of Coskinolina sp of Ypresian–Lutetian, Nummulites obesus of early Lutetian, Dictyoconus egyptiensis of Lutetian, Orbitolites sp. of Ypresian–Bartonian, Miliola sp of early–middle Eocene, Idalina grelaudae of early Lutetian–Priabonian, Ammobaculites agglutinans, Amphimorphina crassa, Dentalina sp., Nodosaria sp., Operculina sp., Lenticulina sp., Quinqueloculina sp. and Amphistegina sp. of Eocene. This unit passes upward with a conformity into reefal limestones of the middle/late Eocene–early Oligocene Soğucak Formation. At times, the limestone overlies the conformity, there is an indication of a prograding sedimentary sequence. The new stratigraphic, paleontological, sedimentological and structural findings related to the NW Thrace Basin suggest a strong transtensional/extensional tectonic control for the initial Paleogene sedimentary deposition during the Ypresian–Lutetian period as shown by fossil content of the Akalan Formation. Right lateral-slip extensional tectonics appears to have had activity during the middle–late Eocene transgressive deposition of the Soğucak Formation when the basin became deepened and enlarged.


2021 ◽  
Author(s):  
Joanna Pszonka ◽  
Marek Wendorff ◽  
Magdalena Zielińska ◽  
Paweł Godlewski

<p>Facies analysis of the Cergowa Beds of the Polish and Slovak Outer Carpathians shows that this deep-marine siliciclastic unit was deposited by a spectrum of gravity flows ranging from high to low density, which deposited three facies associations (A, B and C). Association A consists of very fine- to medium-grained sandstones with mudstone and coal clasts, granules and rich in coalified organic matter fragments. Sandstones beds reach 8 m in thickness, are massive and subordinately parallel laminated (Ta and Tab). They are interpreted as resulting from incremental, rapid deposition from collapse of a near-bed layer (Ta, Tab) and laterally sheared near-bed layer (Tb) below high-density, turbulent flows and steady turbidity currents or, in case of mud-rich sandstones, en masse deposition by debris flows. Association B comprises very fine- and fine-grained sandstones with mud and coal clasts, granules and coalified plant fragments and detritus. They are massive, parallel- and ripple cross-laminated (Tab, Tabc, Tbc), reach 2 m in thickness and contain mudstone intercalations up to 50 cm. These sandstones seem to have originated from a combination of incremental deposition by high-density turbidity currents (Tab, Tb), low-amplitude bedload waves at the upper stage planar lamination in more dilute turbidity current (Tb) and suspension of fully turbulent and dilute turbidity currents (Tbc, Tc). Association C consists of very fine- to fine-grained sandstones and siltstones with fine organic detritus and minor mud clasts. Parallel- and ripple cross-lamination (Tbc, Tbcd) dominate, bed thickness of sandstones and siltstones amounts to 1-50 cm and mudstones reaches 200 cm. Association C was deposited by transformation of waning, dilute and fully turbulent turbidity currents from ripples into lower stage planar lamination.</p><p>Sandstone and mudstone beds at Lipowica (Poland) contain three types of coalified terrestrial organic matter. Based on their morphology and size these are: (i) coalified plant detritus dispersed in B and C associations, (ii) coalified plant fragments forming elongated lenses in A and B associations and (iii) coalified fragments of tree trunks occurring in A and B facies. Petrographic components of organic matter represented by collotelinite, telinite, gelinite and fusinite with co-occuring framboidal pyrite indicate terrestrial plants affected by fast gelification and burial processes of varying intensity. The size of the plant fragments supplied to the Dukla basin is positively correlated with indicators of hydrodynamic regimes suggested by their hosting sediments. Namely, the larger the fragments, the higher flow energy and steadier and longer lasting sustained sediment delivery.</p><p>Sedimentary features of the Cergowa Beds suggest deposition out of gradually aggrading sustained turbulent sandy gravity flows primarily controlled by hyperpycnal effluents from a delta. Palaeocurrent data and comparison of mineral composition of sandstone infilling a hollow coalified tree trunk at Lipowica quarry with sandstone beds of the hosting succession suggest provenance from shelf fringing the emergent Silesian Ridge, which acted as a source area to the west of the basin. The depositional age NP23 and NP24 during the Oligocene eustatic sea-level fall implies that the delta supplying the Cergowa basin was located at the edge of this shelf.</p>


2007 ◽  
Vol 144 (2) ◽  
pp. 319-331 ◽  
Author(s):  
S. J. VEEVERS ◽  
A. T. THOMAS ◽  
P. TURNER

The uppermost Llandovery to lower Wenlock Coralliferous ‘Group’ in SW Pembrokeshire is here redefined as a single formation with two members. The Coralliferous Formation is approximately 150 m thick and comprises a basal unit of granule- to pebble-grade rudite beds, the Renney Slip Member, overlain by interbedded mudstones and fine sandstones of the Deadman's Bay Member. The Renney Slip Member lies unconformably above the Skomer Volcanic Group and includes 12.4 m of coarse grained, granule- and pebble-rich rudites, with beds up to 0.94 m thick. Three lithofacies are recognized within this unit: coarse, granule-rich rudite beds are interpreted as a variety of mass flow deposits, some of which have been reworked in a marine environment; thick sandstones with planar and ripple lamination are shoreface to offshore transition zone deposits; silty mudstones interbedded with very fine grained sandstones represent marine offshore deposits, formed largely below mean storm wave base. These facies associations, and abundant bioturbation, indicate an environment with a strong marine influence, and a proximal source of coarse grained sediment. The Renney Slip Member is reinterpreted in the context of a fan delta depositional model. At least seven cycles of deposition are recognized, each showing an upwards-fining pattern, representing deposition from fan delta, shoreface–transition zone to open marine environments. These patterns of deposition are attributed to localized tectonic movements causing variations in relative sea level. At the time the Renney Slip Member was deposited, the southern Welsh Basin margin is interpreted as a fault-block extensional margin, with the landmass of Pretannia to the south. Though fan-delta deposition took place southwards against the uplifted footwall of the Wenall Fault, the basin margin lay to the south of the Ritec Fault.


2007 ◽  
Vol 586 ◽  
pp. 119-145 ◽  
Author(s):  
SVETLANA KOSTIC ◽  
GARY PARKER

Turbidity currents act to sculpt the submarine environment through sediment erosion and deposition. A sufficiently swift turbidity current on a steep slope can be expected to be supercritical in the sense of the bulk Richardson number; a sufficiently tranquil turbidity current on a mild slope can be expected to be subcritical. The transition from supercritical to subcritical flow is accomplished through an internal hydraulic jump. Consider a steady turbidity current flowing from a steep canyon onto a milder fan, and then exiting the fan down another steep canyon. The flow might be expected to undergo a hydraulic jump to subcritical flow near the canyon–fan break, and then accelerate again to critical flow at the fan–canyon break downstream. The problem of locating the hydraulic jump is here termed the ‘jump problem’. Experiments with fine-grained sediment have confirmed the expected behaviour outlined above. Similar experiments with coarse-grained sediment suggest that if the deposition rate is sufficiently high, this ‘jump problem’ may have no solution with the expected behaviour, and in particular no solution with a hydraulic jump. In such cases, the flow either transits the length of the low-slope fan as a supercritical flow and shoots off the fan–canyon break without responding to it, or dissipates as a supercritical flow before exiting the fan. The analysis presented below confirms the existence of a range associated with rapid sediment deposition where no solution to the ‘jump problem’ can be found. The criterion for this range is stated in terms of an order-one dimensionless parameter involving the fall velocity of the sediment. The criterion is tested and confirmed against the experiments mentioned above. A sample field application is presented.


1993 ◽  
Vol 5 (4) ◽  
pp. 379-388 ◽  
Author(s):  
Luis A. Buatois ◽  
Francisco J. Medina

The Lagrelius Point Formation (?Barremian–Aptian) is the basal unit of the Gustav Group and crops out on the north-west coast of James Ross Island. It consists of about 250 m of coarse-grained siliciclastic rocks. The type section of the Lagrelius Point Formation is defined here from just south of Lagrelius Point. The measured section comprises the uppermost 80 m of the unit and mainly consists of clast-supported, boulder, cobble to pebble conglomerates; very coarse to medium-grained sandstones occur rarely. Four sedimentary facies are recognized. A disorganized conglomerate facies (1) is interpreted as having been deposited from non-cohesive debris flows and high density gravelly turbidity currents. Inversely graded conglomerate facies (2) and normally graded to graded stratified conglomerate and pebbly sandstone facies (3) reflect sedimentation from high density gravelly turbidity currents. Massive and parallel stratified sandstone facies (4) is thought to record deposition from high density sandy turbidity currents. Two types of facies assemblages have been recognized. A major channel assemblage, represented by the lower part of the measured section and the minor channel assemblage forming the upper part of the section. The total succession is thought to represent the aggradation of a major submarine braided channel followed by the establishment and subsequent infill of a series of minor channels in a marginal terrace.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Mateusz Mleczak ◽  
Małgorzata Pisarska-Jamroży

AbstractThe study analyses a 7.5-m-thick sedimentary succession deposited in the largest sandur (the Gwda sandur, a glacial outwash plain) in NW Poland, during the late Weichselian (MIS 2). Although the study site is located in the distal zone of the sandur, its sedimentological features and palaeohydrological parameters reflect the presence of an energetic, powerful environment typical of the proximal zone. Three sedimentary units were recognized in the studied sedimentary succession: (1) lower unit — fine-grained sands with ripple cross-lamination and horizontal lamination; (2) middle unit — gravelly coarse-grained sands and sandy gravels with planar cross-stratification; and, (3) upper unit — sands and gravelly sands with trough cross-stratification. Although the age of deposition of the sandur is accepted to be convergent with that of end-moraines of the same phase, the sediments in the distal zone of the Gwda sandur correlate with an earlier glaciation phase/subphase. Our findings hint at a complex problem: large sandurs such as the Gwda sandur were probably deposited over a long time, and their successions might record the textural and structural features of the proximal subenvironment, even in their distal parts due to deglaciation-related shifting of the proximal zone of a sandur. This paper presents a new approach to analysing the depositional processes in large sandurs, shows a new light on glaciofluvial water supply dynamics of distal parts of sandurs, and may solve several fundamental problems related to the sandur deposition.


2017 ◽  
Vol 39 (2) ◽  
pp. 299
Author(s):  
Maurício Andrades Paixão ◽  
Masato Kobiyama

The present paper aimed to evaluate the size sediment effects on runout area damaged by debris flow by using Kanako-2D in Böni Watershed, Serra Gaucha. This watershed presents a vast history of natural disasters, highlighting the events occurred in 1982 and 2000. The sediment sizes considered in the simulations and evaluated in terms of erosion, deposition and reached area were 0.15, 0.30, 0.50, 1.0, 1.3, 2.0 and 3.0 m. The sediment size strongly influenced on the erosion, deposition and total area reached by debris flow. Fine-grained sediments presented higher mobility, traveling greater distances and reaching larger areas than coarse-grained sediments. The obtained results confirm that Kanako-2D can be an important tool to predict susceptible areas to debris flow.


Author(s):  
Wei Xu ◽  
Di-Cheng Zhu ◽  
Qing Wang ◽  
Roberto F Weinberg ◽  
Rui Wang ◽  
...  

Abstract Amphibole plays an important role in the petrogenesis and evolution of arc magmas, but its role is not completely understood yet. Here, a field, petrological, geochronological and geochemical study is carried out on ultramafic-mafic arc cumulates with textural and chemical heterogeneities and on associated host diorites from the eastern Gangdese Batholith, southern Tibet to explore the problem. The cumulates occur as a large body in diorite host-rocks. The core of the body consists of coarse-grained Cpx hornblendite with a porphyritic texture. Towards the contact with the host diorite, the coarse-grained Cpx hornblendite grades to relatively homogeneous fine-grained melagabbro. Zircon U–Pb dating indicates they all crystallized at 200 ± 1 Ma. Textural features and whole-rock and mineral chemical data reveal that both the Cpx hornblendite and the melagabbro are mixtures of two different mineral assemblages that are not in equilibrium: (1) brown amphibole and its clinopyroxene inclusions; (2) matrix clinopyroxene + green amphibole + plagioclase + quartz + accessory phases. Clinopyroxene and brown amphibole from the first assemblage are enriched in middle rare earth elements (MREE) relative to light REE (LREE) and heavy REE (HREE), and are weakly depleted in Ti, whereas clinopyroxene and green amphibole from the second assemblage are characterized by LREE enrichment over MREE-HREE and more marked Sr and Ti depletion. The higher Mg#, MgO and Cr of the late-formed green amphibole than the early-formed brown amphibole suggest that the two assemblages are not on the same liquid line of descent. Given the close relations of the three rock types in the exposed crustal section, the cumulates are interpreted to have formed in an open system, in which an ultramafic cumulate body consisting of the first assemblage reacted with the host dioritic melt to form new clinopyroxene and amphibole of the second assemblage. The melt calculated to be in equilibrium with the first mineral assemblage resembles an average continental arc basalt, that is less evolved than the host dioritic melt, responsible for the second mineral assemblage. On the basis of whole-rock Sr–Nd–Hf isotopic similarity of the cumulates and a host diorite sample, we argue that the host diorites were formed through crystal fractionation from the parent melt of the first assemblage. Results of least-squares mass-balance calculations suggest the quantities of the host dioritic melts, involved in the generation of these modified cumulates, vary from ~25% to ~44%. The presence of magmatic epidote in the host diorites and Al-in-Hb geobarometry indicate the reaction that occurred when the dioritic melts percolated through the cumulate body was at ~6 kbar. Both the brown and green amphiboles are enriched in MREE relative to HREE, and can impart residual melts with a strong geochemical signature of amphibole fractionation (low Dy/Yb). Thus, we conclude that fractional crystallization and melt-rock reaction are two mechanisms by which amphibole controls arc magma petrogenesis and evolution.


Sign in / Sign up

Export Citation Format

Share Document