scholarly journals Screening of opportunistic Encephalitozoon intestinalis and Enterocytozoon bieneusi in immunocompromised patients in Slovakia

2019 ◽  
Vol 27 (4) ◽  
pp. 330-334 ◽  
Author(s):  
Monika Halánová ◽  
Alexandra Valenčáková ◽  
Pavol Jarčuška ◽  
Miloš Halán ◽  
Oľga Danišová ◽  
...  
2000 ◽  
Vol 37 (2) ◽  
pp. 113-128 ◽  
Author(s):  
K. Wasson ◽  
R. L. Peper

The phylum Microspora contains a diverse group of single-celled, obligate intracellular protozoa sharing a unique organelle, the polar filament, and parasitizing a wide variety of invertebrate and vertebrate animals, including insects, fish, birds, and mammals. Encephalitozoon cuniculi is the classic microsporidial parasite of mammals, and encephalitozoonosis in rabbits and rodents has been and continues to be recognized as a confounding variable in animal-based biomedical research. Although contemporary research colonies are screened for infection with this parasite, E. cuniculi remains a cause of morbidity and mortality in pet and conventionally raised rabbits. In addition, E. cuniculi is a potential pathogen of immature domestic dogs and farm-raised foxes. The recent discovery and identification of Encephalitozoon intestinalis, Encephalitozoon hellem, and Enterocytozoon bieneusi, in addition to E. cuniculi, as opportunistic pathogens of humans have renewed interest in the Microspora. Veterinary pathologists, trained in the comparative anatomy of multiple animal species and infectious disease processes, are in a unique position to contribute to the diagnosis and knowledge of the pathogenesis of these parasitic diseases. This review article covers the life cycle, ultrastructure, and biology of mammalian microsporaidia and the clinical disease and lesions seen in laboratory and domestic animals, particularly as they relate to Encephalitozoon species. Human microsporidial disease and animal models of human infection are also addressed. Often thought of as rabbit pathogens of historical importance, E. cuniculi and the related mammalian microsporidia are emerging as significant opportunistic pathogens of immunocompromised individuals.


2007 ◽  
Vol 70 (3) ◽  
pp. 681-684 ◽  
Author(s):  
YNES R. ORTEGA ◽  
MARIA P. TORRES ◽  
SIARA VAN EXEL ◽  
LAUREN MOSS ◽  
VITALIANO CAMA

The order Microsporidia contains a number of ubiquitous pathogens that can infect various animals, including humans. Enterocytozoon bieneusi and Encephalitozoon intestinalis have been associated with gastrointestinal illness in humans. The effect of four disinfectants—ammonium hydroxide, hydrogen peroxide, and two commercial disinfectants containing peroxyacetic acid (Tsunami) and N-alkyl dimethyl benzyl ammonium chloride (Timsen)—on E. intestinalis spores was examined using exposure times of 1, 5, and 15 min. Spore viability was determined in vitro with RK-13 cells. Hydrogen peroxide was most efficient at inactivating microsporidial spores at all tested concentrations and treatment times, whereas ammonium hydroxide was effective only at the highest concentration at all exposure times. Tsunami (40 μg/ml) and Timsen (200 and 400 ppm) could inactivate spores when incubated for 5 and 15 min.


2005 ◽  
Vol 71 (6) ◽  
pp. 3153-3157 ◽  
Author(s):  
M. Haro ◽  
F. Izquierdo ◽  
N. Henriques-Gil ◽  
I. Andrés ◽  
F. Alonso ◽  
...  

ABSTRACT Microsporidia are ubiquitous opportunistic parasites in nature infecting all animal phyla, and the zoonotic potential of this parasitosis is under discussion. Fecal samples from 124 pigeons from seven parks of Murcia (Spain) were analyzed. Thirty-six of them (29.0%) showed structures compatible with microsporidia spores by staining methods. The DNA isolated from 26 fecal samples (20.9%) of microsporidia-positive pigeons was amplified with specific primers for the four most frequent human microsporidia. Twelve pigeons were positive for only Enterocytozoon bieneusi (9.7%), 5 for Encephalitozoon intestinalis (4%), and one for Encephalitozoon hellem (0.8%). Coinfections were detected in eight additional pigeons: E. bieneusi and E. hellem were detected in six animals (4.8%); E. bieneusi was associated with E. intestinalis in one case (0.8%); and E. hellem and E. intestinalis coexisted in one pigeon. No positive samples for Encephalitozoon cuniculi were detected. The internally transcribed spacer genotype could be completed for one E. hellem-positive pigeon; the result was identical to the genotype A1 previously characterized in an E. hellem Spanish strain of human origin. To our knowledge, this is the first time that human-related microsporidia have been identified in urban park pigeons. Moreover, we can conclude that there is no barrier to microsporidia transmission between park pigeons and humans for E. intestinalis and E. hellem. This study is of environmental and sanitary interest, because children and elderly people constitute the main visitors of parks and they are populations at risk for microsporidiosis. It should also contribute to the better design of appropriate prophylactic measures for populations at risk for opportunistic infections.


2014 ◽  
Vol 60 (9) ◽  
pp. 557-568 ◽  
Author(s):  
Heng Xiang ◽  
Ruizhi Zhang ◽  
David De Koeyer ◽  
Guoqing Pan ◽  
Tian Li ◽  
...  

Microsporidia are a group of obligate intracellular eukaryotic parasites that infect a wide variety of species, including humans. Phylogenetic analysis indicates a relationship between the Microsporidia and the Fungi. However, most results are based on the analysis of relatively few genes. DarkHorse analysis involves the transformation of BLAST results into a lineage probability index (LPI) value and allows for the comparison of genes for an entire genome with those of other genomes. Thus, we can see which genes from the microsporidia score most closely based on the LPI with other eukaryotic organisms. In this analysis, we calculated the LPI for each gene from the genomes of 7 Microsporidia, Antonospora locustae, Enterocytozoon bieneusi, Encephalitozoon cuniculi, Encephalitozoon intestinalis, Nosema bombycis, Nosema ceranae, and Nematocida parisii, to analyze the genetic relationships between Microsporidia and other species. It was found that many (91%) genes were most closely correlated with genes from other microsporidial genomes and had the highest mean LPI (0.985), indicating a monophyletic origin of the Microsporidia. In a subsequent analysis, we excluded the other Microsporidia from the analysis to look for relationships before the divergence of Microsporidia, and found that 43% of the microsporidial genes scored highest with fungal genes, and a higher mean LPI was found with Fungi than with other kingdoms, suggesting that Microsporidia is closely related to Fungi at the genomic level. Microsporidial genes were functionally clustered based on the KOG (Eukaryotic COG) database, and the possible lineages for each gene family were discussed in concert with the DarkHorse results.


Animals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2218
Author(s):  
Anabel Martínez-Padilla ◽  
Javier Caballero-Gómez ◽  
Ángela Magnet ◽  
Félix Gómez-Guillamón ◽  
Fernando Izquierdo ◽  
...  

Microsporidia are obligate intracellular protist-like fungal pathogens that infect a broad range of animal species, including humans. This study aimed to assess the presence of zoonotic microsporidia (Enterocytozoon bieneusi, Encephalitozoon intestinalis, Encephalitozoon hellem, and Encephalitozoon cuniculi) in organ meats of European wild rabbit (Oryctolagus cuniculus) and Iberian hare (Lepus granatensis) consumed by humans in Spain. Between July 2015 and December 2018, kidney samples from 383 wild rabbits and kidney and brain tissues from 79 Iberian hares in southern Spain were tested by species-specific PCR for the detection of microsporidia DNA. Enterocytozoon bieneusi infection was confirmed in three wild rabbits (0.8%; 95% CI: 0.0–1.7%) but not in hares (0.0%; 95% CI: 0.0–4.6%), whereas E. intestinalis DNA was found in one wild rabbit (0.3%; 95% CI: 0.0–0.8%) and three Iberian hares (3.8%; 95% CI: 0.0–8.0%). Neither E. hellem nor E. cuniculi infection were detected in the 462 (0.0%; 95% CI: 0.0–0.8%) lagomorphs analyzed. The absence of E. hellem and E. cuniculi infection suggests a low risk of zoonotic foodborne transmission from these wild lagomorph species in southern Spain. To the authors’ knowledge, this is the first report of E. intestinalis infection in wild rabbits and Iberian hares. The presence of E. bieneusi and E. intestinalis in organ meats from wild lagomorphs can be of public health concern. Additional studies are required to determine the real prevalence of these parasites in European wild rabbit and Iberian hare.


2015 ◽  
Vol 49 (3) ◽  
pp. 432-438 ◽  
Author(s):  
Ülfet ÇETİNKAYA ◽  
Berna HAMAMCI ◽  
Leylagül KAYNAR ◽  
Salih KUK ◽  
İzzet ŞAHİN ◽  
...  

Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1424
Author(s):  
Ji-Young Kwon ◽  
Ji-Ye Seo ◽  
Tae-Yun Kim ◽  
Hee-Il Lee ◽  
Jung-Won Ju

Encephalitozoon intestinalis and Enterocytozoon bieneusi can cause diarrhea in humans, especially severe diarrhea in immunocompromised patients. However, there have been few studies on Enc. intestinalis and Ent. bieneusi in patients with acute diarrhea in the Republic of Korea (ROK). In this study, fecal samples were collected from 1241 patients with acute diarrhea in 2020. Among these, 24 cases of Enc. intestinalis and one case of Ent. bieneusi were detected via PCR amplification of small subunit ribosomal RNA. Genotyping of the internal transcribed spacer region sequence revealed that the detected Ent. bieneusi genotype was in Group 1. This study provides the first evidence that Ent. bieneusi exists in humans in addition to animals in the ROK. To identify the causative agent, continuous monitoring of Enc. intestinalis and Ent. bieneusi is necessary for patients with acute diarrhea in the ROK.


2017 ◽  
Vol 40 (2) ◽  
pp. 147-154
Author(s):  
Kadum N. E.

     In order to identify microsporidia and other fungi  in  stool and  urine samples of human, and in fecal and milk samples of cattle, 100 stool samples with or without diarrhea and 50 urine samples, human fecal and urine samples were obtained from certain Baghdad hospitals and certain rural areas surroundings Baghdad city, in addition to 50 fecal and 56  milk samples  of cattle apparently healthy were collected  from Alshula Slaughter House and  directly from  anal of the animal field  of College of Veterinary Medicine/ Baghdad University. All samples were collected during six months from 1/10/2014 to 1/4/2015. Thin films were formed and stained by Webers Modified Trichrom stain and Modified Trichrom-Ryan Blue stain. The results showed that (23%) 23 out of 100 stool samples of human were positive for Microsporidia spp. and (16%) 8 out of 50 urine samples of human were positive for this fungus. While the result revealed (18%) 9 out of 50 fecal samples and (7.14%) 4 out of 56 milk samples of cattle were positive for Microsporidia spp. The result also explained that (25.3%) 19 cases of patients suffering from diarrhea expressed   Microsporidia spp. after the examination of 75 stool samples, while (16%) 4 persons without diarrhea showed positive Microspordia, through the examination of 25 stool samples. The study explains that the  Enterocytozoon bieneusi is a common species associated with human infection and  Encephalitozoon intestinalis is  a common Microsporidia associated with  cattle infection  whereas Encephalitozoon cuniculi is rarely identified in human  but recorded in cattle.


Sign in / Sign up

Export Citation Format

Share Document