scholarly journals Relationships between Parameters of the Cardiovascular System, Salivary Lactoferrin Level and Body Temperature during a Short-Term Human Whole-Body Exposure to Cold Air

2019 ◽  
Vol 9 (2) ◽  
pp. 111-116
Author(s):  
Liliya Poskotinova ◽  
Elena Krivonogova ◽  
Olga Krivonogova ◽  
Denis Demin ◽  
Irina Gorenko ◽  
...  
2020 ◽  
Vol 10 (4) ◽  
pp. 407-411
Author(s):  
Olga Krivonogova ◽  
Elena Krivonogova ◽  
Liliya Poskotinova

Background: Despite global warming and the improvement of personal protective equipment against unfavorable climatic factors, cold remains an important environmental challenge for humans. The aim of the work was to reveal the peculiarities of the dynamics of cardiovascular parameters in humans with short-term, whole-body exposure to cold air, depending on the parameters of voluntary attention. Methods and Results: The study involved 28 healthy male volunteers aged between18 and 21 years, born and living in Arkhangelsk. Testing to assess sustained attention parameters using the Toulouse-Pierón Attention Test with the measurement of the index of accuracy (C, units) (the ability to voluntary concentration) and processing speed (V, units), had been previously performed. Subsequent stages of the study included recording the studied parameters before (Stage 1), during 10-minute exposure to the cold air (Stage 2), and 5 minutes after cold exposure (Stage 3). The registration of indicators in Stages 1 and 3 was carried out indoors at an air temperature of +20 °C. The registration of indicators in Stage 2 was carried out in a cold chamber at -20 °C. Determining the body temperature in the ear canal (Tear, °C) and on the skin of the dorsum of the right hand (Tskin, °C) was performed using a B.Well WF-1000 medical electronic infrared thermometer. Parameters of blood pressure (SBP and DBP) and heart rate variability (HRV) were evaluated. As a result of cluster analysis, 2 groups were identified: Group 1 (n=14) and Group 2 (n=14). In Group 2, the index V was significantly lower than in Group 1(P=0.02). In Group I, Tskin in Stage 1 was significantly higher than in Group 2 (P=0.03). In Stage 2, Tskin decreased in both groups, but lower Tskin values (P=0.001) were recorded in Group 2 than in Group I. In Stage 2, there was a statistically significant increase in SBP in Group 2 (P=0.01). In Group 1, initial SDNN and all HRV spectral indices were significantly higher than in Group 2. In Stage 2, there was a significant increase in SDNN in both groups. However, in Group 2, we found a statistically significant increase in VLF in Stage 2 (P=0.01), while in Group I this indicator remained unchanged. In Stage 3, HRV parameters in Group 1 recovered to baseline values, while in Group 2, HRV parameters remained elevated relative to baseline values. Conclusion: Individuals with high processing speed and preserved attention span have higher vagal activity and skin temperature. When such individuals are exposed to cold, they experience a moderate increase in BP and baroreflex response. In persons with a reduced speed of information processing but with sufficient accuracy of attention, there is a more pronounced mobilization of regulation resources on the part of the cardiovascular, neurovegetative systems to maintain the core temperature of the body.


2014 ◽  
Vol 37 (2) ◽  
pp. 58-64 ◽  
Author(s):  
Taishi Tsuji ◽  
Naruki Kitano ◽  
Kenji Tsunoda ◽  
Erika Himori ◽  
Tomohiro Okura ◽  
...  

1993 ◽  
Vol 128 (3) ◽  
pp. 251-258 ◽  
Author(s):  
Per H Andersen ◽  
Bjørn Richelsen ◽  
Jens Bak ◽  
Ole Schmitz ◽  
Niels S Sørensen ◽  
...  

In a short-term (eight days) double-blind crossover study involving 10 obese patients, the effects of dexfenfluramine on glucose and lipid metabolism were examined. The protocol comprised whole body in vivo measurements (hyperinsulinemic euglycemic clamp in combination with indirect calorimetry) and in vitro studies of isolated adipocytes (lipolysis and glucose transport). All study participants were weight stable during the study period (103.1±3.2, placebo vs 103.3±3.1 kg, dexfenfluramine, NS). The following parameters were significantly reduced after dexfenfluramine treatment: fasting levels of plasma glucose (6.2±0.2 vs 5.7±0.2 mmol/l, p<0.01), serum insulin (168.0±14.5 vs 138.9±7.9 pmol/l, p<0.05), serum C-peptide (0.68±0.03 vs 0.58±0.02 nmol/l, p<0.05) and total serum cholesterol (6.07±0.41 vs 5.48±0.38 mmol/l, p< 0.01). In the basal state glucose oxidation rate was significantly reduced by 36% (p<0.001), whereas non-oxidative glucose disposal was significantly increased by 41% (p<0.01), following dexfenfluramine treatment. Insulin-stimulated (2 mU·kg−1·min−1) glucose disposal rate tended to be increased (18%, p=0.10) after dexfenfluramine. In conclusion, dexfenfluramine possesses beneficial regulatory effects on glucose and lipid metabolism in non-diabetic obese patients, independently of weight loss.


2012 ◽  
Vol 47 (2) ◽  
pp. 184-190 ◽  
Author(s):  
Masaki Iguchi ◽  
Andrew E. Littmann ◽  
Shuo-Hsiu Chang ◽  
Lydia A. Wester ◽  
Jane S. Knipper ◽  
...  

Context: Conditions such as osteoarthritis, obesity, and spinal cord injury limit the ability of patients to exercise, preventing them from experiencing many well-documented physiologic stressors. Recent evidence indicates that some of these stressors might derive from exercise-induced body temperature increases. Objective: To determine whether whole-body heat stress without exercise triggers cardiovascular, hormonal, and extra-cellular protein responses of exercise. Design: Randomized controlled trial. Setting: University research laboratory. Patients or Other Participants: Twenty-five young, healthy adults (13 men, 12 women; age = 22.1 ± 2.4 years, height = 175.2 ± 11.6 cm, mass = 69.4 ± 14.8 kg, body mass index = 22.6 ± 4.0) volunteered. Intervention(s): Participants sat in a heat stress chamber with heat (73°C) and without heat (26°C) stress for 30 minutes on separate days. We obtained blood samples from a subset of 13 participants (7 men, 6 women) before and after exposure to heat stress. Main Outcome Measure(s): Extracellular heat shock protein (HSP72) and catecholamine plasma concentration, heart rate, blood pressure, and heat perception. Results: After 30 minutes of heat stress, body temperature measured via rectal sensor increased by 0.8°C. Heart rate increased linearly to 131.4 ± 22.4 beats per minute (F6,24 = 186, P &lt; .001) and systolic and diastolic blood pressure decreased by 16 mm Hg (F6,24 = 10.1, P &lt; .001) and 5 mm Hg (F6,24 = 5.4, P &lt; .001), respectively. Norepinephrine (F1,12 = 12.1, P = .004) and prolactin (F1,12 = 30.2, P &lt; .001) increased in the plasma (58% and 285%, respectively) (P &lt; .05). The HSP72 (F1,12 = 44.7, P &lt; .001) level increased with heat stress by 48.7% ± 53.9%. No cardiovascular or blood variables showed changes during the control trials (quiet sitting in the heat chamber with no heat stress), resulting in differences between heat and control trials. Conclusions: We found that whole-body heat stress triggers some of the physiologic responses observed with exercise. Future studies are necessary to investigate whether carefully prescribed heat stress constitutes a method to augment or supplement exercise.


Author(s):  
Yuxiong Chen ◽  
Dehui Kong ◽  
Jia Fu ◽  
Yongqiao Zhang ◽  
Yakun Zhao ◽  
...  

2014 ◽  
Vol 307 (10) ◽  
pp. E885-E895 ◽  
Author(s):  
Marjolein A. Wijngaarden ◽  
Leontine E. H. Bakker ◽  
Gerard C. van der Zon ◽  
Peter A. C. 't Hoen ◽  
Ko Willems van Dijk ◽  
...  

During fasting, rapid metabolic adaptations are required to maintain energy homeostasis. This occurs by a coordinated regulation of energy/nutrient-sensing pathways leading to transcriptional activation and repression of specific sets of genes. The aim of the study was to investigate how short-term fasting affects whole body energy homeostasis and skeletal muscle energy/nutrient-sensing pathways and transcriptome in humans. For this purpose, 12 young healthy men were studied during a 24-h fast. Whole body glucose/lipid oxidation rates were determined by indirect calorimetry, and blood and skeletal muscle biopsies were collected and analyzed at baseline and after 10 and 24 h of fasting. As expected, fasting induced a time-dependent decrease in plasma insulin and leptin levels, whereas levels of ketone bodies and free fatty acids increased. This was associated with a metabolic shift from glucose toward lipid oxidation. At the molecular level, activation of the protein kinase B (PKB/Akt) and mammalian target of rapamycin pathways was time-dependently reduced in skeletal muscle during fasting, whereas the AMP-activated protein kinase activity remained unaffected. Furthermore, we report some changes in the phosphorylation and/or content of forkhead protein 1, sirtuin 1, and class IIa histone deacetylase 4, suggesting that these pathways might be involved in the transcriptional adaptation to fasting. Finally, transcriptome profiling identified genes that were significantly regulated by fasting in skeletal muscle at both early and late time points. Collectively, our study provides a comprehensive map of the main energy/nutrient-sensing pathways and transcriptomic changes during short-term adaptation to fasting in human skeletal muscle.


CHEST Journal ◽  
1994 ◽  
Vol 105 (6) ◽  
pp. 1728-1731 ◽  
Author(s):  
Heikki Koskela ◽  
Hannu Tukiainen ◽  
Aulikki Kononoff ◽  
Heikki Pekkarinen

Sign in / Sign up

Export Citation Format

Share Document