scholarly journals Low-Frequency Admittance of Capacitor with Working Substance “Insulator–Partially Disordered Semiconductor– Insulator”

2021 ◽  
Vol 12 (3) ◽  
pp. 202-210
Author(s):  
N. A. Poklonski ◽  
I. I. Anikeev ◽  
S. A. Vyrko

The study of the electrophysical characteristics of crystalline semiconductors with structural defects is of practical interest in the development of radiation-resistant varactors. The capacitance-voltage characteristics of a disordered semiconductor can be used to determine the concentration of point defects in its crystal matrix. The purpose of this work is to calculate the low-frequency admittance of a capacitor with the working substance “insulator–crystalline semiconductor with point t-defects in charge states (−1), (0) and (+1)–insulator”. A layer of a partially disordered semiconductor with a thickness of 150 μm is separated from the metal plates of the capacitor by insulating layers of polyimide with a thickness of 3 μm. The partially disordered semiconductor of the working substance of the capacitor can be, for example, a highly defective crystalline silicon containing point t-defects randomly (Poissonian) distributed over the crystal in charge states (−1), (0), and (+1), between which single electrons migrate in a hopping manner. It is assumed that the electron hops occur only from t-defects in the charge state (−1) to t-defects in the charge state (0) and from t-defects in the charge state (0) to t-defects in the charge state (+1).In this work, for the first time, the averaging of the hopping diffusion coefficients over all probable electron hopping lengths via t-defects in the charge states (−1), (0) and (0), (+1) in the covalent crystal matrix was carried out. For such an element, the low-frequency admittance and phase shift angle between current and voltage as the functions on the voltage applied to the capacitor electrodes were calculated at the t-defect concentration of 3∙1019 cm−3 for temperatures of 250, 300, and 350 K and at temperature of 300 K for the t-defect concentrations of 1∙1019, 3∙1019, and 1∙1020 cm−3. 

2021 ◽  
Vol 12 (1) ◽  
pp. 13-22
Author(s):  
N. A. Poklonski ◽  
S. A. Vyrko ◽  
A. I. Kovalev ◽  
I. I. Anikeev ◽  
N. I. Gorbachuk

The study of thermoelectric properties of crystalline semiconductors with structural defects is of practical interest in the development of radiation-resistant Peltier elements. In this case, the spectrum of energy levels of hydrogen-like impurities and intrinsic point defects in the band gap (energy gap) of crystal plays an important role.The purpose of this work is to analyze the features of the single-electron band model of semiconductors with hopping electron migration both via atoms of hydrogen-like impurities and via their own point triplecharged intrinsic defects in the c- and v-bands, as well as to search for the possibility of their use in the Peltier element in the temperature range, when the transitions of electrons and holes from impurity atoms and/or intrinsic defects to the c- and v-bands can be neglected.For Peltier elements with electron hopping migration we propose: (i) an h-diode containing |d1)and |d2)-regions with hydrogen-like donors of two types in the charge states (0) and (+1) and compensating them hydrogen-like acceptors in the charge state (−1); (ii) a homogeneous semiconductor containing intrinsic t-defects in the charge states (−1, 0, +1), as well as ions of donors and acceptors to control the distribution of t-defects over the charge states. The band diagrams of the proposed Peltier elements in equilibrium and upon excitation of a stationary hopping electric current are analyzed.A model of the h-diode containing hydrogen-like donors of two types |d1) and |d2) with hopping migration of electrons between them for 50 % compensation by acceptors is considered. It is shown that in the case of the reverse (forward) electrical bias of the diode, the cooling (heating) of the region of the electric double layer between |d1)and |d2)-regions is possible.A Peltier element based on a semiconductor with point t-defects is considered. It is assumed that the temperature and the concentration of ions of hydrogen-like acceptors and donors are to assure all t-defects to be in the charge state (0). It is shown that in such an element it is possible to cool down the metal-semiconductor contact under a negative electric potential and to heat up the opposite contact under a positive potential.


1997 ◽  
Vol 485 ◽  
Author(s):  
B. G Budaguan ◽  
A. A. Aivazov ◽  
A. A. Sherchenkov ◽  
A. V Blrjukov ◽  
V. D. Chernomordic ◽  
...  

AbstractIn this work a-Si:H/c-Si heterostructures with good electronic properties of a-Si:H were prepared by 55 kHz Plasma Enhanced Chemical Vapor Deposition (PECVD). Currentvoltage and capacitance-voltage characteristics of a-Si:H/c-Si heterostructures were measuredto investigate the influence of low frequency plasma on the growing film and amorphous silicon/crystalline silicon boundary. It was established that the interface state density is low enough for device applications (<2.1010 cm−2). The current voltage measurements suggest that, when forward biased, space-charge-limited current determines the transport mechanism in a- Si:H/c-Si heterostructures, while reverse current is ascribed to the generation current in a-Si:H and c-Si depletion layers.


2015 ◽  
Vol 233-234 ◽  
pp. 55-59
Author(s):  
Marina Kirman ◽  
Artem Talantsev ◽  
Roman Morgunov

The magnetization dynamics of metal-organic crystals has been studied in low frequency AC magnetic field. Four modes of domain wall motion (Debye relaxation, creep, slide and over - barrier motion (switching)) were distinguished in [MnII(H(R/S)-pn)(H2O)] [MnIII(CN)6]⋅2H2O crystals. Debye relaxation and creep of the domain walls are sensitive to Peierls relief configuration controlled by crystal lattice chirality. Structural defects and periodical Peierls potential compete in the damping of the domain walls. Driving factor of this competition is ratio of the domain wall width to the crystal lattice parameter.


Author(s):  
А.Я. Виноградов ◽  
С.А. Грудинкин ◽  
Н.А. Беседина ◽  
С.В. Коняхин ◽  
М.К. Рабчинский ◽  
...  

AbstractThe structural, electrical, and optical properties of thin graphite-like films produced by magnetron- assisted sputtering onto crystalline silicon and quartz at substrate temperatures in the range from 320 to 620°C are studied. From analysis of the Raman spectra, it is established that, as the substrate temperature is elevated, the crystallite size increases and the concentration of structural defects and the content of amorphous carbon in the phase composition of the films decrease. It is found that, as the substrate temperature is elevated, the maximum of the absorption intensity in the ultraviolet spectral region of the optical absorption spectra shifts to longer wavelengths and the absorption intensity in the visible and near-infrared spectral regions increases. As the deposition temperature is elevated, the conductivity of the films increases from 0.2 Ω^–1 cm^–1 at 320°C to 30 Ω^–1 cm^–1 at 620°C.


1986 ◽  
Vol 166 (2-3) ◽  
pp. 458-479 ◽  
Author(s):  
H.J. Barth ◽  
E. Mühling ◽  
W. Eckstein
Keyword(s):  

1987 ◽  
Vol 50 (2) ◽  
pp. 155-163 ◽  
Author(s):  
G. A. Watterson

SummaryKimura used the heterozygosity and the number of low-frequency alleles to estimate that about 14% of mutations are selectively neutral. The method is shown to be subject to biases and to disruption due to bottleneck effects. Let deleterious alleles have selective disadvantage, s, compared with neutral alleles and let Ne denote the effective diploid population size. The estimator, , of the proportion of neutral alleles is positively biased if (roughly) 4NeS < 25 or if 4Nes > 200. In the former case, one cannot adequately detect the different influences of deleterious and neutral alleles, whereas in the latter case, deleterious alleles will rarely appear in the sample. These difficulties cause the biases in , and are likely to cause similar biases for any estimation method based solely on allele frequencies. There is substantial sampling variability in in cases of practical interest, when data from 11 loci, or even as many as 31 loci, are pooled. If there has been a recent contraction in population size, will be positively biased, often yielding values greater than 1 or even being infinite. But after a recent expansion in population size, the heterozygosity will not have made as quick an increase and will be negatively biased. Population expansion alone can produce values close to those observed by Kimura, even if all alleles are neutral. In an appendix, a new method for simulating samples of neutral and deleterious genes is described.


1996 ◽  
Vol 14 (3) ◽  
pp. 335-345 ◽  
Author(s):  
K. Rohlena ◽  
B. Králiková ◽  
J. Krása ◽  
L. Láska ◽  
K. Mašek ◽  
...  

Results are presented of experiments on ion production from Ta targets using a short pulse (350–600 ps in focus) illumination with focal power densities exceeding 1014 Wcm-2 at the wavelength of an iodine photodissociation laser (1.315 μm) and its harmonics. Strong evidence of the existence of tantalum ions with the charge state +45 near the target surface was obtained by X-ray spectroscopy methods. The particle diagnostics point to the existence of frozen high charge states (<53+) of Ta ions in the far expansion zone at about 2 m from the target. The measured charge state-ion energy distribution indicates the highest energy (>4 MeV) for the highest observed charge states. A tentative theoretical explanation of the observed anomalous charge state freezing phenomenon in the expanding plasma produced by a subnanosecond laser pulse is given.


2005 ◽  
Vol 864 ◽  
Author(s):  
Scott A. Harrison ◽  
Thomas F. Edgar ◽  
Gyeong S. Hwang

AbstractBased on first principles density functional theory calculations, we identify the structure and diffusion pathway for a fluorine-silicon interstitial complex (F-Sii). We find the F-Sii complex to be most stable in the singly positive charge state at all Fermi leVels. At mid-gap, the complex is found to have a binding energy of 1.08 eV relative to bond-centered F+ and (110)-split Sii. We find the F-Sii complex has an overall migration barrier of 0.76 eV, which suggests that this complex may play an important role in fluorine diffusion. Our results should lead to more accurate models that describe the behavior of fluorine co-implants crystalline silicon.


1997 ◽  
Vol 467 ◽  
Author(s):  
R. Carius ◽  
F. Finger ◽  
U. Backhausen ◽  
M. Luysberg ◽  
P. Hapke ◽  
...  

ABSTRACTThe electronic and optical properties of microcrys tall ine silicon films prepared by plasma enhanced chemical vapour deposition are investigated with Hall-effect, electrical conductivity, photothermal deflection spectroscopy and photoluminescence measurements. In particular, the influence of the grain size and the crystalline volume fraction on the conductivity, the carrier density and the Hall mobility is investigated in highly doped films. A percolation model is proposed to describe the observed transport data. Photoluminescence properties were studied in un-doped films. It is proposed that the photoluminescence is due to recombination at structural defects similar to those observed in crystalline silicon.


Sign in / Sign up

Export Citation Format

Share Document