scholarly journals Evolution of Microstructure and Mechanical Properties of Nanostructured NiFe Films under Influence of Heat Treatment

2021 ◽  
Vol 20 (2) ◽  
pp. 109-120
Author(s):  
V. M. Fedosyuk

. Nanostructured NiFe films were synthesized by pulsed electrolytic deposition on silicon with a gold sublayer, after which they have been subjected to to temperature treatment at 373-673 K in order to study the effect of heat treatment on the microstructure and mechanical properties of the objects under study. High-resolution atomic force microscopy has made it possible  to trace the stages of  microstructure evolution under the  influence of  heat treatment, including the process of  nonlinear increase in grain growth and two-stage agglomeration. It is shown that with an increase in heat treatment temperature to 673 K, the grain size increases from 68 to 580 nm in comparison with the initial sample, undergoing agglomeration processes at temperatures of  100 and 300 °C. The mechanical properties of nanostructured NiFe films have been studied by the nanoindentation method. The dependences of the hardness of Young’s modulus and the values of the resistance to elastoplastic deformation on depth have been obtained and analyzed in the paper. This approach has permitted to reveal differences in the behavior of the mechanical properties of the surface layer and the internal volume of the film under the action of different heat treatment temperatures, as well as to demonstrate the opposite reaction of different material layers to an increase in temperature. As a result of a thorough analysis of the deformation curves of nanoindentation, it has been found that the homogenization of the surface in combination with the activation of oxidation processes leads to the strengthening of near-surface layer of NiFe films. At the same time, the internal volume of the material is characterized by a nonlinear decrease in hardness and Young’s modulus with an increase in the heat treatment temperature. The explanation for this phenomenon has been found in the complex effect of a decrease in the number of grain boundaries (due to an increase in the average grain size with increasing temperature) and an increase in the concentration of gold atoms diffusing from the sublayer more actively with an increase in the processing temperature of NiFe films.

Nanomaterials ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 1077 ◽  
Author(s):  
Tatiana Zubar ◽  
Valery Fedosyuk ◽  
Daria Tishkevich ◽  
Oleg Kanafyev ◽  
Ksenia Astapovich ◽  
...  

Nanostructured NiFe film was obtained on silicon with a thin gold sublayer via pulsed electrodeposition and annealed at a temperature from 100 to 400 °C in order to study the effect of heat treatment on the surface microstructure and mechanical properties. High-resolution atomic force microscopy made it possible to trace stepwise evolving microstructure under the influence of heat treatment. It was found that NiFe film grains undergo coalescence twice—at ~100 and ~300 °C—in the process of a gradual increase in grain size. The mechanical properties of the Au/NiFe nanostructured system have been investigated by nanoindentation at two various indentation depths, 10 and 50 nm. The results showed the opposite effect of heat treatment on the mechanical properties in the near-surface layer and in the material volume. Surface homogenization in combination with oxidation activation leads to abnormal strengthening and hardening-up of the near-surface layer. At the same time, a nonlinear decrease in hardness and Young’s modulus with increasing temperature of heat treatment characterizes the internal volume of nanostructured NiFe. An explanation of this phenomenon was found in the complex effect of changing the ratio of grain volume/grain boundaries and increasing the concentration of thermally activated diffuse gold atoms from the sublayer to the NiFe film.


2011 ◽  
Vol 275 ◽  
pp. 155-158
Author(s):  
X.N. Zhang ◽  
Peng Cao

Recently there is increasing demand for the development of new -type titanium with a low elastic modulus for surgical orthopaedic implant applications. In this paper, we developed a new Ti-Mo-Zr alloy based on the d-electron alloy design theory. The designed Ti-12Mo-5Zr (at%) alloy was then produced using ingot metallurgy and evaluated pertaining to the effect of heat treatment on the microstructure and mechanical properties. The alloy exhibited a relatively low Young’s modulus similar to some typical  orthopaedic titanium alloys. Yield strength, tensile strength and Young’s modulus of the alloy decreased after solid solution treatment. The mechanism by which heat treatment affects the mechanical properties is discussed.


Sign in / Sign up

Export Citation Format

Share Document