scholarly journals Single-input Multiple-output Signals Third-order Active-R Filter for different Circuit Merit Factor (Q)

2015 ◽  
Vol 12 (3) ◽  
pp. 611-618
Author(s):  
Baghdad Science Journal

Single-input Multiple-output Signals Third-order Active-R Filter for different Circuit Merit Factor Q Configuration is proposed. This paper discusses a new configuration to realize third-order low pass, band pass and high pass. The presented circuit uses Single-input Multiple-output signals, OP-AMP and passive components. This filter is useful for high frequency operation, monolithic IC implementation and it is easy to design .This circuit gives three filter functions low-pass, high-pass and band-pass. This filter circuit can be used for different merit factor (Q) with high pass band gain. This gives better stop-band attenuation and sharper cut-off at the edge of the pass-band. Thus the response shows wider pass-band. The Ideal value of this filter circuit which is closed to Ideal value of third-order active-R filter is at 0.8? Q ?6. The advantages of this circuit are reduction in size and weight, increased circuit reliability, more economical and easy for manufacturing.

Author(s):  
Umar Mohammad ◽  
Fang Tang ◽  
Shu Zhou ◽  
Mohd Yusuf Yasin

A new study imitating the design and implementation of single-input–single-output (SISO) filters as bilateral filters has been presented in this paper. Second generation current controlled current conveyor (CCCII), being a popular low power active element was considered for the realization of the proposed design. Complete design, analysis and implementation of the voltage mode SISO filter was done using only two CCCII’s and two passive parasitic components. The striking feature of this work is that the proposed design can be made to work at either the input node or the output node, as well as in the cases; the change of direction changes the filter into an inverse filter and buffer filter. Basic filter applications like low-pass, high-pass, band-pass and band-stop were aimed to check the uniformity of the proposed design at different frequencies. Results perceived from the simulation study were fare enough on both the side nodes of the proposed design. Categorically, the circuit can be aimed to work in lieu of a filter transceiver. The consistency of the circuit was analyzed by the nodal analysis. Whereas the working performance was enormously analyzed and evaluated during the simulation analysis. The proposed design was simulated in HSPICE tool to exhibit and exploit the delivery, using the 45[Formula: see text]nm predictive technology model (PTM) parameters, with [Formula: see text][Formula: see text]V rail to rail voltages. Maximum power consumption of the circuit is around 138.5[Formula: see text][Formula: see text]W. Finally, the design was also implemented in Cadence Virtuoso using 40[Formula: see text]nm SMIC parameters.


2011 ◽  
Vol 20 (03) ◽  
pp. 549-555 ◽  
Author(s):  
A. K. SINGH ◽  
R. SENANI ◽  
D. R. BHASKAR ◽  
R. K. SHARMA

A number of configurations for realizing voltage-mode (VM) biquads using op-amps and OTAs have been presented in the literature, however, none of these provide the following desirable properties simultaneously: (i) realizability of all the five standard filters (namely; low pass, high pass, band pass, band stop and all pass), (ii) tunability of all the three filter parameters (namely; ω0, bandwidth or Q0 and gain) and (iii) not requiring any realization condition in any of the five filter responses. This paper presents a new configuration which does possess all the above mentioned desirable properties simultaneously while using only two internally-compensated type op-amps and a reasonable number of OTAs. The workability of the new configuration has been demonstrated by SPICE simulations based upon CMOS Op-amp and CMOS OTAs.


Author(s):  
Rashmika Rai ◽  
◽  
S Indu

The study presents a universal filter and Oscillator obtain by applying only single input. All the passive components used are grounded which is suitable for integrated circuit implementation. In the circuit by applying for single input simultaneously low pass, High Pass, Band Pass, All Pass, and Notch filter is obtained by using two blocks of Differential Difference current conveyor transconductance amplifier.


Author(s):  
Gordana Jovanovic Dolecek ◽  
Javier Diaz Carmona

Stearns and David (1996) states that “for many diverse applications, information is now most conveniently recorded, transmitted, and stored in digital form, and as a result, digital signal processing (DSP) has become an exceptionally important modern tool.” Typical operation in DSP is digital filtering. Frequency selective digital filter is used to pass desired frequency components in a signal without distortion and to attenuate other frequency components (Smith, 2002; White, 2000). The pass-band is defined as the frequency range allowed to pass through the filter. The frequency band that lies within the filter stop-band is blocked by the filter and therefore eliminated from the output signal. The range of frequencies between the pass-band and the stop-band is called the transition band and for this region no filter specification is given. Digital filters can be characterized either in terms of the frequency response or the impulse response (Diniz, da Silva & Netto, 2002). Depending on its frequency characteristic, a digital filter is either low-pass, high-pass, band-pass, or band-stop filters. A low-pass (LP) filter passes low frequency components to the output, while eliminating high-frequency components. Conversely, the high-pass (HP) filter passes all high-frequency components and rejects all low-frequency components. The band-pass (BP) filter blocks both low- and high-frequency components while passing the intermediate range. The band-stop (BS) filter eliminates the intermediate band of frequencies while passing both low- and high-frequency components. In terms of their impulse responses digital filters are either infinite impulse response (IIR) or finite impulse response (FIR) digital filters. Each of four types of filters (LP, HP, BP, and BS) can be designed as an FIR or an IIR filter (Ifeachor & Jervis, 2001; Mitra, 2005; Oppenheim & Schafer, 1999).


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Mourina Ghosh ◽  
Sajal K. Paul ◽  
Rajiv Kumar Ranjan ◽  
Ashish Ranjan

This paper proposes a multi-input single-output (MISO) third order voltage mode (VM) universal filter using only one operational transresistance amplifier (OTRA). The proposed circuit realizes low-pass, high-pass, all-pass, band-pass, and notch responses from the same topology. The PSPICE Simulation results using 0.5 μm CMOS technology agree well with the theoretical design.


2018 ◽  
Vol 27 (12) ◽  
pp. 1850196 ◽  
Author(s):  
Bhartendu Chaturvedi ◽  
Jitendra Mohan ◽  
Atul Kumar

The paper introduces a new versatile universal biquadratic configuration based on two fully differential second generation current conveyors without need of input matching conditions. The proposed circuit consists of two fully differential second generation current conveyors, four resistors and two grounded capacitors. The proposed biquad configuration provides all five standard filtering responses: low-pass, high-pass, band-pass, band-reject and all-pass in voltage-mode, transadmittance-mode, current-mode and transimpedance-mode. The proposed circuit is single-input multiple-outputs type, so all responses are available simultaneously. Moreover, extra inverting amplifier and double-type amplifier are also not required in the proposed circuit for any filtering response. The nonideal and parasitic effects of fully differential second generation current conveyor on the proposed circuit have also been investigated. HSPICE simulation results have been incorporated to validate the proposal.


2007 ◽  
Vol 16 (04) ◽  
pp. 507-516 ◽  
Author(s):  
SHAHRAM MINAEI ◽  
ERKAN YUCE

In this paper, a universal current-mode second-order active-C filter for simultaneously realizing low-pass, band-pass and high-pass responses is proposed. The presented filter employs only three plus-type second-generation current-controlled conveyors (CCCII+s). This filter needs no critical active and passive component matching conditions and no additional active and passive elements for realizing high output impedance low-pass, band-pass and high-pass characteristics. The angular resonance frequency (ω0) and quality factor (Q) of the proposed resistorless filter can be tuned electronically. To verify the theoretical analysis and to exhibit the performance of the proposed filter, it is simulated with SPICE program.


2005 ◽  
Vol 14 (01) ◽  
pp. 159-164 ◽  
Author(s):  
SUDHANSHU MAHESHWARI ◽  
IQBAL A. KHAN

A novel voltage-mode universal filter employing only two current differencing buffered amplifiers (CDBAs) is proposed. The filter uses four inputs and single output to realize six responses, viz. low-pass, high-pass, inverting band-pass, noninverting band-pass, band-elimination, and all-pass through input selection with independent pole-Q control. Computer simulation results using SPICE are also given to verify the theory.


Author(s):  
Emre Cancioglu ◽  
Gokberk Cakiroglu ◽  
Alkim Gokcen ◽  
Yilmaz Sefa Altanay

This study provides design and implementation of four digital filters (low pass, high pass, band pass and band stop) for ECG (electrocardiogram) data on FPGA with MATLAB by a serial communication. The study is conducted with using ECG data which is obtained from PhysioBank Database platform. SysGen (System Generator for DSP) which is a toolbox for MATLAB is used for designing and implementing the digital filters. The aim of the study is to perform four different digital filters with various blocks on the SysGen Toolbox. The study then examines the results of four different digital filters.


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Dinesh Prasad ◽  
Mayank Srivastava ◽  
D. R. Bhaskar

A new resistorless single-input-multi-output (SIMO) universal transadmittance (TA) type filter employing two voltage differencing transconductance amplifiers (VDTA) and two grounded capacitors is proposed. The proposed topology realizes simultaneously low pass (LP), high pass (HP), and band pass (BP) filter functions. Band rejects (BR) and all pass (AP) filters are also realizable through appropriate connections of currents. The proposed configuration also offers independent control of natural angular frequency (ω0) and bandwidth (BW) and low active and passive sensitivities. The workability of proposed configuration has been demonstrated through PSPICE simulations with TSMC CMOS 0.18 μm process parameters.


Sign in / Sign up

Export Citation Format

Share Document