scholarly journals Effect of Saline water and Potash Fertilizer on some chemical constituents in Pisum sativum L.(Var.Senador Cambados) plant.

2009 ◽  
Vol 6 (2) ◽  
pp. 257-264
Author(s):  
Baghdad Science Journal

Field experiment was conducted to test the effect of saline water and fertilizers rate on Pisum sativum L. plants . Treatments of the experiment included two levels of water salinity (2, 7 dSm-1) as a main plot and three levels of potash fertilization K2SO4 (44%K) namely 150 control, 300 and 450 kg/Donum as a sub plot. Results indicated that irrigation of plant with saline water 7 dSm-¹ caused a significant decrease in K and P contents specially in the upper parts of the plants , the percentage of the K increased (2.80%) under 2 dSm-¹of irrigation water and 300 kg/ donum fertilizer rate in the upper leaves, However K decreased(1.10%) in lower leaves under 7 dSm-¹ and 300 kg/donum fertilizer. while P increased in pods under same water salinity but with 150kg/ donum potash fertilizer. although P decreased( 0. 3 %) in pods under 7 dSm-¹ salinity water with 150 kg/donum fertilizer. However the results showed irrigation with 7 dSm-¹ saline water and 150kg/ donum fertilizer increased Ca, Mg and Na percentage ( 3.1 ,0.45 ,1.19 % ) in the roots of plants respectively , the lowest Ca ,Mg percentage was in pods of plants irrigated with 7 dSm-¹ saline water and fertilized with 150kg/ donum (0.39,0.05%), beside Na lowest percentage was ( 0.16 %) in upper leaves after using 2 dSm-¹ saline water and fertilized with 300kg/ donum. Accordingly, conclusion could be made that potassium fertilization may reduce the inhibitory effect of increasing salinity of irrigation water on pea.

2007 ◽  
Vol 4 (3) ◽  
pp. 351-357
Author(s):  
Baghdad Science Journal

Filed experiment was conducted to test the effect of saline water and potassium fertilizers rate on proline and water potential of Pisum sativum L. (Var.Senador Cambados ) leaves . Treatments of the experiment included two levels of water salinity( 2, 7 dSm-1) as a main plot and fertilizer rates as a sub plot. Results indicated that irrigation of plant with saline water 7 dSm-1 and fertilization 150 kg/donum increased proline accumulation and water potential 0.31 mmol/g,-17.00 bar at 9 AM morning and 0.62 mmol/g , -21.00 bar at 3 PM afternoon ,Irrigating plant with a 2 dSm-1 and fertilization 300 kg/donum decreased proline accumulation and water potential of leaves 0.22 mmol/g, -16.00 bar at 9 AM and 0.43 mmol/g,-18.00 bar at 3 PM . Irrigation plants with saline water 7 dSm-1 and fertilizer with 150 kg/ Donum K2SO4 increased Root/Shoot to 0.89 ,while 0.41 after irrigation with 2 dSm-1 saline water and fertilization with 300 kg/ Donum K2SO4 . The Na/K ratio increased to 0.53 under 7 dSm-1 of irrigation water and 150 kg/Donum fertilization and decreased to 0.1 under 2 dSm-1 irrigation water and fertilized 300 kg/ Donum . The results lead to the conclusion that potassium fertilization may reduce the inhibitory effect of increasing salinity of irrigation water on pea.


2008 ◽  
Vol 5 (1) ◽  
pp. 19-26
Author(s):  
Baghdad Science Journal

Field experiment was conducted to test the effect of saline water 2 and7 dSm-1 potassium fertilizer rate 150,300 and 450 kg/donum on nitrogen fixation in Pisum sativum L. nodules. The experiment included anatomy study .Results water salinity ( 2,7 dSm-1) as a main plot and fertilizer rates as a sub plot. Results indicated that irrigation with saline water 7 dSm-¹ caused a significant decrease in N contents especially in the lower parts of the plants. The percentage of the N decreased in lower leaves to (0.01%) under 7dSm-¹ and 300 kg/donum fertilizer; however the percentage increased in the upper leaves to (2.80%) under with 2dSm-¹of irrigation water and 300 kg/ donum fertilizer rate. Fresh weight decreased to 6.26g under 7 dSm-¹ and 450 kg/donum fertilizer rate, but irrigated with 2 dSm-¹ and 300 kg/donum fertilizer rate increased it to 18.87g. The nodules number , fresh and dry weight decreased to( 114 nodule/plant ,2.18 and 1.70 g/plant ) with 7 dSm-¹ salinity water and 150 kg/donum fertilizer, respectively , the results showed that irrigation with 2 dSm-¹ saline water and 300kg/ donum fertilizer increased them to ( 167.6 nodule/plant,5.43 and 2.20 g/plant )respectively. Increasing levels of irrigation water from 2 to 7 dSm-¹ salinity, caused increased vessels thickness in both leaves and root; this is because the salt accumulated on cell wall .whereas cortex cell wall was thicker in root for same reason . Thus of nitrogen fixing symbiosis in pea was more determined with anatomy change in root tissues which caused decreasing in nodules number fresh and dry weight. Accordingly, conclusion could be made that potassium may reduce the inhibitory effect for nitrogen fixation in saline water irrigation condition.


DYNA ◽  
2021 ◽  
Vol 88 (216) ◽  
pp. 79-86
Author(s):  
José Leôncio de Almeida Silva ◽  
José Francismar de Medeiros ◽  
Iarajane Bezerra do Nascimento ◽  
Jeferson Vieira José ◽  
Neyton de Oliveira Miranda ◽  
...  

The experiment was conducted in 2014, in a completely randomized factorial design (5x6), with three replications. The factors were soil classes (Typic Ustipsamments, Typic Haplustults, Typic Haplustepts, Typic Ustifluvents, and Typic Haplusterts) and levels of irrigation water salinity (0.5, 1.0, 2.0, 3.0, 4.0, and 5.0 dS m-1). Increasing salinity of irrigation water caused increase in leaf contents of macronutrients in all soils. Adequate leaf contents of N, K, and Mg were observed in plants grown in all soils except K in Typic Haplusterts and Mg in Typic Ustipsamments. Appropriate P levels were observed only in Typic Haplustepts, and Ca only in Typic Haplustults and Typic Ustifluvents. Increased salinity of irrigation water caused increased leaf contents of micronutrients in all soils except copper in Typic Ustifluvents, iron in Typic Haplusterts and Typic Haplustults, and manganese in Typic Ustipsamments and Typic Haplustults.


Irriga ◽  
2018 ◽  
Vol 14 (4) ◽  
pp. 504-517 ◽  
Author(s):  
Lourival Ferreira Cavalcante ◽  
Geocleber Gomes de Sousa ◽  
Saulo Cabral Gondim ◽  
Fernando Luiz Figueiredo ◽  
Ícaro Herbert Lucena Cavalcante ◽  
...  

CRESCIMENTO INICIAL DO MARACUJAZEIRO AMARELO MANEJADO EM DOIS SUBSTRASTOS IRRIGADOS COM ÁGUA SALINA   Lourival Ferreira Cavalcante1; Geocleber Gomes de Sousa2; Saulo Cabral Gondim3; Fernando Luiz Figueiredo1; Ítalo Herbert Lucena Cavalcante4; Adriana Araujo Diniz51Departamento de Solos e Engenharia Rural, Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, PB,  [email protected] 2Solos e Nutrição de Plantas, Centro de Ciências Agrárias, Universidade Federal Ceará, Fortaleza, CE3Recursos Naturais, Universidade Federal de Campina Grande, Campina Grande, PBUniversidade Federal do Piauí, Bom Jesus, PI5Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia, PB  1 RESUMO             O trabalho foi realizado, no período de outubro a dezembro de 2006, em ambiente protegido do CCA/UFPB – Campus II, Areia, PB, com o objetivo de avaliar os efeitos da salinidade da água de irrigação sobre o crescimento inicial do maracujazeiro amarelo (Passiflora edulis f. flavicarpa Deg) cultivado em diferentes substratos. Os tratamentos foram distribuídos em blocos casualizados com três repetições e 12 unidades experimentais por parcela, arranjados num fatorial 5 x 2, referentes aos valores de condutividade elétrica da água de irrigação ( 0,4; 1,0; 2,0; 3,0 e 4,0 dS m-1 ) e dois substratos, sendo um mais arenoso (Solo Neossolo Regolítico) e o outro mais argiloso, constituído por uma mistura do Neossolo Regolítico (50% ) mais Nitossolo Vermelho eutrófico (50%). O aumento da salinidade da água de irrigação elevou expressivamente o caráter salino dos substratos, refletindo-se na redução do crescimento pelo diâmetro caulinar, área foliar, produção de biomassa das raízes e parte aérea das plantas em ambos os casos, porém com maior intensidade no substrato constituído pela mistura de parte iguais dos solos Neossolo Regolítco e Nitossolo Vermelho. UNITERMOS: Salinidade, irrigação, Passiflora edulis, condutividade elétrica  CAVALCANTE, L. F.; SOUSA, G. G. de; GONDIM, S. C.; FIGUEIREDO, F. L.; CAVALCANTE, Í. H. L.; DINIZ, A. A. INITIAL GROWTH OF YELLOW PASSION FRUIT CROPED IN TWO SUBSTRATS MANAGED WITH SALINE WATER IN TWO SUBSTRATES  2 ABSTRACT                                    This study was carried out, during  the period of October /2006 to December /2006, in green house conditions from Agrarian Sciences Center , Federal University of Paraíba, Paraíba State, Brazil, in order to evaluate the effects of water salinity on initial growth of yellow passion plants (Passiflora edulis f. flavicarpa Deg) cultivated in different substrates. Treatments were distributed in a randomized blocks experimental design with three repetitions and 12 experimental units per parcel, in a factorial arrangement 5 x 2, referring to electrical conductivity of irrigation water levels (0.4; 1.0; 2.0; 3.0 e 4.0 dS m-1) and two substrates, being a sandy (Entisol) and a clay, composed by a mixture of Entisol (50%) and Eutrophic Red Nitosol (50%). The increasing of irrigation water salinity expressively enhanced the saline index of the substrate, reflecting in a plant growth reduction related to stem diameter, leaf area, root mass production and shoot mass production of both substrates, but more expressive for the one with equal parts of Entisol and Red Nitosol. KEYWORDS: Salinity, irrigation, Passiflora edulis, electric conductivity


Author(s):  
Mônica S. da S. Sousa ◽  
Vera L. A. de Lima ◽  
Marcos E. B. Brito ◽  
Luderlândio de A. Silva ◽  
Rômulo C. L. Moreira ◽  
...  

ABSTRACT The salinity of water and soil reduces the growth and production of crops, especially the fruit trees, such as papaya. Thus, it is necessary to obtain management alternatives for cultivation under these conditions. Therefore, the objective of this study was to evaluate the growth and phytomass of papaya cultivated under irrigation with saline water and organic fertilization. An experiment was set up using a randomized block design, with the treatments distributed in a 5 x 2 factorial scheme, consisting of five levels of salinity of irrigation water (0.6, 1.2, 1.8, 2.4 and 3.0 dS m-1) and two levels of organic fertilization (10 and 20 L of bovine manure per plant), with three replications, totaling thirty experimental plots. Growth variables of papaya were evaluated. Papaya plants were negatively affected by irrigation water salinity, with a greater effect on the number of leaves and on dry phytomass of leaves, with no effect of bovine manure levels.


Author(s):  
André A. R. da Silva ◽  
Luana L. de S. A. Veloso ◽  
Ronaldo do Nascimento ◽  
Elka C. S. Nascimento ◽  
Carlos V. de C. Bezerra ◽  
...  

ABSTRACT Indication of salt-tolerant cotton cultivars can make the agricultural exploitation with saline water irrigation feasible in the Brazilian semi-arid region. Thus, this study aimed to evaluate the gas exchanges and growth of cotton cultivars irrigated with saline water. The study was conducted in pots adapted as drainage lysimeters under greenhouse conditions, using a sandy loam Entisols as substrate. Treatments were distributed in completely randomized design, in 5 x 2 factorial arrangement, relative to five levels of irrigation water electrical conductivity - ECw (1.5, 3.0, 4.5, 6.0 and 7.5 dS m-1) and two cotton cultivars (BRS 368 RF and BRS Safira). Increase in irrigation water salinity inhibits the vegetative growth and gas exchanges of the cotton cultivars BRS Safira and BRS 368 RF. Leaf area and instantaneous carboxylation efficiency are the most affected variables. Physiological and growth performance of the cultivar BRS Safira in response to water salinity was higher than that of BRS 368 RF.


2017 ◽  
Vol 5 (4) ◽  
pp. 136 ◽  
Author(s):  
Ashour, H. A. ◽  
Abdel Wahab M. Mahmoud

An open field experiment was carried out during 2015 and 2016 seasons at the experimental nursery of the Ornamental Horticulture Department, Faculty of Agriculture, Cairo University, Egypt. The purpose of present research was to investigate the effect of foliar application of nano silicon with different concentrations and gypsum soil application on growth, flowering and chemical constituents of Jatropha integerrima plants irrigated with different levels of saline water. The concentrations of saline water were (1000, 2000 and 4000 ppm), in addition to tap water (270 ppm) as a control, simultaneously plants were received monthly foliar application of nano silicon 1 and 2 mM or soil application of gypsum at 20 g/plant, either applied individually or in combination.The results showed that, elevating salt concentration in irrigation water decreased vegetative growth characteristics, flowering traits, leaves anatomy and chemical constituents. In contrast, increasing salinity of irrigation water boosted contents of proline, Ca%, Na%, Cl%, total phenolic and flavonoids. On the other hand, foliar application of nano silicon and soil addition of gypsum treatments either individually or in combination had favorable effects on enhancing vegetative parameters and chemical constitutes, meanwhile decreasing accumulation of Na%, Cl%, total phenolic and flavonoids in leaves. It can be concluded that, foliar spray of nano silicon combined with soil addition of gypsum was the best effective and economic treatment recommended for mitigating the harmful effect of salinity stress on Jatropha plants irrigated with saline water at concentration up to 4000 ppm.


2019 ◽  
Vol 55 (7) ◽  
pp. 649-659 ◽  
Author(s):  
Xiaojuan (Juan) Wang ◽  
Sale Peter ◽  
Zhiqian Liu ◽  
Roger Armstrong ◽  
Simone Rochfort ◽  
...  

2019 ◽  
Vol 157 (9-10) ◽  
pp. 693-700
Author(s):  
L. J. Chen ◽  
C. S. Li ◽  
Q. Feng ◽  
Y. P. Wei ◽  
Y. Zhao ◽  
...  

AbstractAlthough numerous studies have investigated the individual effects of salinity, irrigation and fertilization on soil microbial communities, relatively less attention has been paid to their combined influences, especially using molecular techniques. Based on the field of orthogonal designed test and deoxyribonucleic acid sequencing technology, the effects of saline water irrigation amount, salinity level of irrigation water and nitrogen (N) fertilizer rate on soil bacterial community structure were investigated. The results showed that the irrigation amount was the most dominant factor in determining the bacterial richness and diversity, followed by the irrigation water salinity and N fertilizer rate. The values of Chao1 estimator, abundance-based coverage estimator and Shannon indices decreased with an increase in irrigation amount while increased and then decreased with an increase in irrigation water salinity and N fertilizer rate. The highest soil bacterial richness and diversity were obtained under the least irrigation amount (25 mm), medium irrigation water salinity (4.75 dS/m) and medium N fertilizer rate (350 kg/ha). However, different bacterial phyla were found to respond distinctively to these three factors: irrigation amount significantly affected the relative abundances of Proteobacteria and Chloroflexi; irrigation water salinity mostly affected the members of Actinobacteria, Gemmatimonadetes and Acidobacteria; and N fertilizer rate mainly influenced the Bacteroidetes' abundance. The results presented here revealed that the assessment of soil microbial processes under combined irrigation and fertilization treatments needed to be more careful as more variable consequences would be established by comparing with the influences based on an individual factor, such as irrigation amount or N fertilizer rate.


Author(s):  
Idelfonso L. Bezerra ◽  
Reginaldo G. Nobre ◽  
Hans R. Gheyi ◽  
Leandro de P. Souza ◽  
Francisco W. A. Pinheiro ◽  
...  

ABSTRACT The aim of this study was to evaluate the growth of grafted guava cv. ‘Paluma’ subjected to different concentrations of salts in irrigation water and nitrogen (N) fertilization. The plants were transplanted to 150 L lysimeters and under field conditions at the Science and Agri-food Technology Center of the Federal University of Campina Grande, in the municipality of Pombal - PB. The experiment was conducted in randomized block design in a 5 x 4 factorial scheme, with three replicates, and the treatments corresponded to five levels of electrical conductivity of irrigation water - ECw (0.3; 1.1; 1.9; 2.7 and 3.5 dS m-1) and four N doses (70, 100, 130 and 160% of the N dose recommended for the crop). The doses equivalent to 100% corresponded to 541.1 mg of N dm-3 of soil. Irrigation water salinity above 0.3 dS m-1 negatively affects the number of leaves, leaf area, stem diameter, dry phytomass of leaves, branches and shoots . A significant interaction between irrigation water salinity and N fertilization was observed only for the number of leaves and leaf area at 120 days after transplanting. N dose above 70% of the recommendation (378.7 mg N dm-3 soil) did not mitigate the deleterious effects caused by salt stress on plant growth.


Sign in / Sign up

Export Citation Format

Share Document