scholarly journals The Anatomy and Origin of a Synconvergent Grenvillian-Age Metamorphic Core Complex, Chottanagpur Gneiss Complex, Eastern India

Lithosphere ◽  
2021 ◽  
Vol 2020 (1) ◽  
Author(s):  
Nicole Sequeira ◽  
Souradeep Mahato ◽  
Jeffrey M. Rahl ◽  
Soumendu Sarkar ◽  
Abhijit Bhattacharya

Abstract Amphibolite facies supracrustal rocks interleaved with granite mylonites constitute a shallowly dipping carapace overlying granulite facies anatectic basement gneisses in the Giridih-Dumka-Deoghar-Chakai area that spans ~11,000 km2 in the Chottanagpur Gneiss Complex (CGC). Steep N-trending tectonic fabrics in the gneisses include recumbent folds adjacent to the overlying carapace. The basement and carapace are dissected by steep-dipping sinistral shear zones with shallow/moderately plunging stretching lineations. The shear zones trend NNE in the north (north-down kinematics) and ESE in the south (south-down kinematics). Chemical ages in metamorphic monazites in the lithodemic units are overwhelmingly Grenvillian in age (1.0–0.9 Ga), with rafts of older domains in the basement gneisses (1.7–1.45 Ga), granitoids (1.4–1.3 Ga), and the supracrustal rock (1.2–1.1 Ga). P-T pseudosection analysis indicates the supracrustal rocks within the carapace experienced postthrusting midcrustal heating (640–690°C); the Grenvillian-age P-T path is distinct from the existing Early Mesoproterozoic P-T path reconstructed for the basement gneisses. Quartz opening angle thermometry indicates that high temperature (~600°C) persisted during deformation in the southern shear zone. Kinematic vorticity values in carapace-hosted granitoid mylonites and in steep-dipping shear zones suggest transpressional deformation involved a considerable pure shear component. Crystallographic vorticity axis analysis also indicates heterogeneous deformation, with some samples recording a triclinic strain. The basement-carapace composite was extruded along an inclined channel bound by the steep left-lateral transpressional shear zones. Differential viscous extrusion during crustal shortening coupled with the collapse of the thickened crust caused midcrustal flow along flat-lying detachments in the carapace.


1979 ◽  
Vol 89 ◽  
pp. 9-18
Author(s):  
D Bridgwater ◽  
J.S Myers

The Nagssugtoqidian mobile belt is a 240 km wide zone of deformation and plutonic activity which cuts across the Archaean craton of East Greenland. The belt was established 2600 m.y. ago by the formation of vertical E-W shear zones and the syntectonic intrusion of basic dykes. Tectonic activity along the E-W shear zones was followed by the emplacement of tonalitic intrusions, the Blokken gneisses, 2350 m.y. ago in the central parts of the mobile belt. The emplacement of the Blokken gneisses was accompanied and followed by further emplacement of basic dykes. These are synplutonic in the centre of the mobile belt but are emplaced into more rigid crust in the marginal areas of the belt and in the Archaean craton to the north and south. During a second major tectonic and thermal episode circa 1900 m.y. ago, the region was deformed by thrusting from the north. In the southem part of the mobile belt the earlier steep shear zones are cut by shear zones dipping gently northwards in which rocks are downgraded to greenschist facies. The grade of metamorphism increases northwards and shear zones are replaced by open folds with axial surfaces which dip gently northwards. The increasing ductility in the centre of and northem part of the belt is associated with the intrusion of charnockitic plutons and their granulite facies aureoles. Regional uplift occurred before the intrusion of high level post-tectonic plutons of diorite and granite 1550 m.y. ago.



Geosphere ◽  
2020 ◽  
Vol 16 (3) ◽  
pp. 844-874
Author(s):  
Graham B. Baird

Abstract Crustal-scale shear zones can be highly important but complicated orogenic structures, therefore they must be studied in detail along their entire length. The Carthage-Colton mylonite zone (CCMZ) is one such shear zone in the northwestern Adirondacks of northern New York State (USA), part of the Mesoproterozoic Grenville province. The southern CCMZ is contained within the Diana Complex, and geochemistry and U-Pb zircon geochronology demonstrate that the Diana Complex is expansive and collectively crystallized at 1164.3 ± 6.2 Ma. Major ductile structures within the CCMZ and Diana Complex include a northwest-dipping penetrative regional mylonitic foliation with north-trending lineation that bisects a conjugate set of mesoscale ductile shear zones. These ductile structures formed from the same 1060–1050 Ma pure shear transitioning to a top-to-the-SSE shearing event at ∼700 °C. Other important structures include a ductile fault and breccia zones. The ductile fault formed immediately following the major ductile structures, while the breccia zones may have formed at ca. 945 Ma in greenschist facies conditions. Two models can explain the studied structures and other regional observations. Model 1 postulates that the CCMZ is an Ottawan orogeny (1090–1035 Ma) thrust, which was later reactivated locally as a tectonic collapse structure. Model 2, the preferred model, postulates that the CCMZ initially formed as a subhorizontal mid-crustal mylonite zone during collapse of the Ottawan orogen. With continued collapse, a metamorphic core complex formed and the CCMZ was rotated into is current orientation and overprinted with other structures.



2017 ◽  
Vol 53 ◽  
pp. 99-105
Author(s):  
Mary Hubbard ◽  
David R. Lageson ◽  
Roshan Raj Bhattarai

We present preliminary observations from the Solukhumbu region of Nepal, coupled with structures described in the literature, to suggest the importance of structural and metamorphic discontinuities within the Himalayan metamorphic core (Greater Himalayan Sequence) and reactivation of at least one of these thrust discontinuities with a normal (down-to-the-north) sense of displacement. Based on preliminary geochronologic data, development of these discontinuities may have evolved over time. In the Dudh Kosi Valley near Ghat, gneissic rocks and pegmatites exhibit tectonized fabrics and yield argon cooling ages of ~4 Ma for K-feldspar and ~9 Ma for biotite. Just north of Khumjung there is a prominent topographic break from which sheared gneissic rocks indicate a top-to-the-north, or normal, sense of shear. Near Pangboche, a repeated section of kyanitebearing rocks interleaved with sillimanite-muscovite schist suggests structural imbrication and/or interleaved retrograde metamorphism. Below the peaks of Nuptse and Lhotse, the Khumbu thrust (Searle 1999) appears to form the floor of a thick succession of leucogranite sills. We suggest that these discontinuities were formed over time, possibly from early MCT and STDS deformation at ~21 Ma to as recent as ~4 Ma, and need to be considered in kinematic models that combine channel flow with critical taper and tectonic denudation. Moreover, orogenic collapse in the Himalayan core may be migrating southward through time as the orogenic wedge continues to uplift in response to underthrusting of India and southward propagation of the Main Frontal Thrust system.



2018 ◽  
Vol 111 (2) ◽  
pp. 171-179
Author(s):  
Pitsanupong Kanjanapayont ◽  
Peekamon Ponmanee ◽  
Bernhard Grasemann ◽  
Urs Klötzli ◽  
Prayath Nantasin

AbstractThe NW–trending Three Pagodas shear zone exposes a high–grade metamorphic complex named Thabsila gneiss in the Kanchanaburi region, western Thailand. The quartz mylonites within this strike–slip zone were selected for strain analysis. 2–dimensional strain analysis indicates that the averaged strain ratio (Rs) for the lower greenschist facies increment of XZ– plane is Rs = 1.60–1.97 by using the Fry’s method. Kinematic vorticity analysis of the quartz mylonites in the shear zone showed that the mean kinematic vorticity number of this increment is Wk = 0.75–0.99 with an average at 0.90 ±0.07. The results implied that the quartz mylonites within the Three Pagodas shear zone have a dominant simple shear component of about 72% with a small pure shear component. A sinistral shear sense is indicated by kinematic indicators from macro– to micro–scale. We conclude that the Three Pagodas shear zone deformed in the process of sinstral shear–dominated transpression, which is similar to the Mae Ping shear zone in the north.



1989 ◽  
Vol 146 ◽  
pp. 5-12
Author(s):  
B Chadwick ◽  
P.R Dawes ◽  
J.C Escher ◽  
C.R.L Friend ◽  
R.P Hall ◽  
...  

The Ammassalik mobile belt is characterised by a regional layer cake structure of tectonically interleaved sheets of quartzo-feldspathic orthogneisses and supracrustal rocks. The sheets of supracrustal rocks are most abundant in the north of the belt and they include semi-pelitic kyanite-sillimanite gneisses, graphitic schists, marble, amphibolites and local peridotite. The sheets are regarded as parts of a disrupted supracrustal sequence, here termed the Siportoq supracrustal association. Preliminary isotopic age data suggest that most of the orthogneisses are late Archaean, although some have early Proterozoic ages. The Siportoq supracrustal association has yielded an early Proterozoic age. Amphibolite dyke swarms were emplaced at various stages in the evolution of the mobile belt. The Ammassalik belt has an ill-defined northern limit marked by heterogeneous retrogression of a granulite facies terrain up to 100 km wide. Most of the belt is at amphibolite facies, with its southern limit lying to the south of the area considered here. The structure in the south is dominated by nappes and shear zones dipping NE within a wide tract of late Archaean orthogneisses intruded by amphibolite dyke swarms with relatively well preserved primary characteristics. The structure in the north is characterised by more pervasive deformation which gave rise to complex sequences of thrusting and nappe development propagating from the north. Large domes were superimposed on the nappe pile, perhaps as buoyancy phenomena. The dioritic Ammassalik Intrusive Complex (c. 1885 Ma) with its granulite facies assemblages is regarded as a late kinematic phenomenon. Major post-tectonic complexes of granite, diorite and gabbro (c. 1580 Ma) were intruded at a high level well after the close of the tectonism in the Ammassalik mobile belt.



2021 ◽  
Author(s):  
Haobo Wang ◽  
Shuyun Cao ◽  
Franz Neubauer ◽  
Junyu Li ◽  
Xuemei Cheng ◽  
...  

<p>Studies of crustal anatexis have given valuable insights into the evolution of metamorphism–deformation and the tectonic processes at convergent plate margins during orogeny. The transition of metatexite to diatexite migmatite records crucial information about the tectono–thermal evolution and rheology of the deep crust. Along the Ailao Shan–Red River shear zone, metatexite migmatites, diatexite migmatites and leucogranites are widely distributed within the upper amphibolite and granulite facies zones of the Diancang Shan metamorphic complex. The high–pressure granulite–facies metamorphism with mineral assemblage comprising garnet + kyanite + K–feldspar + plagioclase + biotite + quartz + melt is first recognized from the patch metatexite migmatites in the complex. Detailed petrographic evidence and phase diagram reveal that the migmatite underwent nearly isothermal decompression metamorphism, presenting a clockwise P–T path. The peak metamorphic P–T conditions are constrained by phase diagram at ca. 11 kbar and 810 °C, and the amount of melt generated during heating is up to 18 mol%. The extraction and segregation of melts are evidenced by the presence of leucosomes within migmatites and leucogranite dikes, which record the melt flow network through the crust. Zircons and monazites from migmatites record the ages of the melting episode that began at ca. 36 Ma and lasted to ca. 20 Ma. All these results are in accord with orogenic crust thickening accompanied by pervasive anatexis during the Later Eocene to the early Oligocene in the Ailao Shan–Red River shear zone. Combined with available data related to the other continental–exhumed shear zone, we propose that the crustal anatexis has an important effect on the thermal–state of deep–seated shear zones, is thus controlling the rheological behavior of the lithosphere and plays the essential role in the initial localizing of shearing in the lower crust.</p>



2021 ◽  
Author(s):  
Lanita Gutieva ◽  
Annika Dziggel ◽  
Silvia Volante ◽  
Tim Johnson

<p>The Lewisian Gneiss Complex (LGC) in NW Scotland, a classic example of Archean lower crust, is mostly composed of deformed and metamorphosed tonalite–trondhjemite–granodiorite (TTG) gneisses, gneissose granite sheets, and subordinate mafic, ultramafic, and metasedimentary lithologies. It has been traditionally subdivided into three regions that are interpreted to record discrete ages and metamorphic histories, and which are separated by crustal-scale shear zones. A smear of concordant U–Pb zircon ages from the granulite-facies central region has been interpreted to record metamorphic resetting of earlier magmatic and granulite facies metamorphic ages during a subsequent high-temperature metamorphic event. Here, we present U–Pb and Hf isotope data collected via laser-ablation split-stream (LASS) analyses of zircon cores from twenty-seven felsic meta-igneous rocks from the northern, southern, and central regions of the LGC, as well as U–Pb data from zircon rims within most of those samples.</p><p>In samples from the northern and southern regions, the crystallization age (i.e., from zircon cores) was calculated from the upper-intercept age, yielding age range of 2.82-2.63 Ga for the northern, and 3.11–2.63 Ga for the southern region. Zircons in these samples generally have thin or no rims, suggesting an absence of a prolonged high-grade (granulite facies) metamorphic event in those regions. In the central region, zircon cores yield U–Pb crystallization ages between ca. 3.0 Ga and 2.7 Ga, while zircon rims define a continuous spread of ages from ca. 2.8 to 2.4 Ga. Overall, the central region exhibits a continuous and overlapping smear of zircon core and rim ages, suggesting a protracted thermal event in which high-ultrahigh temperature conditions were maintained for >200 m.y., and that discrete magmatic and metamorphic ‘events’ are difficult to identify. Nevertheless, an estimation of the crystallization age of each sample is crucial for interpreting their Lu–Hf isotopic signature. Zircon cores from the tonalite–trondhjemite gneisses have broadly chondritic compositions with a range of calculated mean initial εHf of +2.5 to –1.2, potentially reflecting a mixture of juvenile material and reworked crust, with one outlier at εHf<sub>i</sub> = +4.5 perhaps indicating a renewed influx of juvenile magma. Granite gneisses also have near-chondritic values, although the range is larger and the two youngest granite gneisses have slightly sub-chondritic εHf<sub>i</sub> (–1.5 and –2.5), which indicates that pre-existing crust was involved in their formation. Since there is no significant difference in the Hf isotopic composition between rocks from the three regions, or between the TTG and granite gneisses, we suggest that the broadly chondritic εHf<sub>i</sub> in most of our samples reflects mixing of both depleted mantle and evolved crust during their generation. Despite the similarity of the U-Pb and εHf data from the three regions, the data do not allow to unambiguously discriminate whether the LGC is composed of different levels of a once continuous Archean continent or discrete microcontinents that were amalgamated in the late Archean to Paleoproterozoic.</p>



2006 ◽  
Vol 78 (2) ◽  
pp. 373-389 ◽  
Author(s):  
Nolan M. Dehler ◽  
Rômulo Machado ◽  
Heloisa R.S. Dehler ◽  
Ian McReath ◽  
Alexis R. Nummer

Shear zones geometry in the Paraíba do Sul belt, southeastern Brazil, delineates a NE-trending fan-like structure. Shear zones dip towards SE in the northern limb, and towards NW in the southern one. This geometry has been interpreted either due to transpression or to late folding of flat-lying thrust surfaces. Stretching lineation plunges to ENE-ESE in the northern limb and towards NNE-NE in the southern one. Structural data in the southern limb of the divergent fan suggest a two stage kinematic evolution in high-temperature conditions: an earlier stage with top-to-SSW/SW sinistral thrusting and orogenic-parallel tangential motion, and a later stage with top-down to NNE/NE transtensional deformation. We propose a heterogeneous deformation model to explain the observed shear reversal, and suggest that the imposed transpressional displacement gradient may change during progressive deformation due to transient rheological inhomogeneities in bulk pure shear strain. In the earlier stage, the partially molten material could easily accommodate the imposed strain rates, giving rise firstly to the SW-directed shearing. As the thermal disturbance tended to vanish and the convergence increased, the NNE-directed transtensional shearing developed. We propose that the transtensional deformation characterized in this paper could be related to extrusion processes during regional transpressional strain.



2005 ◽  
Vol 42 (10) ◽  
pp. 1949-1965 ◽  
Author(s):  
William H Peck ◽  
Michael T DeAngelis ◽  
Michael T Meredith ◽  
Etienne Morin

The Morin terrane (Grenville Province, Quebec) is dominated by the 1.15 Ga Morin Anorthosite Massif and related granitic intrusions, all of which exhibit granulite-facies mineral assemblages. Anorthosite-suite rocks are deformed both in shear zones and in the interior of the terrane and show intrusive contact relations with marble along road cuts near the village of St. Jovite. Intrusive rocks exposed in these road cuts have well-developed skarns, which were deformed with the intrusions after emplacement. Skarn minerals are consumed by garnet-forming reactions (e.g., An + Wo = Gr + Qtz) that preserve granulite-facies temperatures and pressures. Calcite–graphite thermometry of Morin terrane marbles records temperatures of 755 ± 38 °C (n = 21), independent of proximity to anorthosite-suite plutons. Preserved metamorphic conditions and the retrograde pressure–temperature (P–T) path in the Morin terrane are very similar to conditions during the 1.07 Ga Ottawan orogeny in the Adirondack Highlands. Metamorphism and deformation of anorthosite-suite rocks and marbles of the Morin terrane are consistent with anorthosite intrusion followed by a distinct granulite-facies overprint.



1968 ◽  
Vol 15 ◽  
pp. 31-35
Author(s):  
V.R McGregor

The Godthåb area, situated in the old central gneiss complex of West Greenland, has yielded two of the oldest radiometric dates yet obtained from Greenland. They are both K/Ar biotite dates, one of 2710 ± 130 m.y. on granodiorite gneiss from Godthåb (Armstrong, 1963), and the other of 2610± 50 m.y. on gneiss collected 55 km to the north and on the opposite side of Godthåbsfjord (Larsen and Møller, this report). The latter gneiss shows evidence of having undergone retrograde metamorphism from granulite facies to amphibolite facies, and its date is presumed to be related to this retrogression (Windley, in press).



Sign in / Sign up

Export Citation Format

Share Document