scholarly journals Combined Effects of Metabolic Heat Production and High AmbientTemperature on Rectal Temperature during Work and at Rest

1983 ◽  
Vol 2 (2) ◽  
pp. 83-87
Author(s):  
Koichi IWANAGA
1998 ◽  
Vol 85 (1) ◽  
pp. 204-209 ◽  
Author(s):  
John W. Castellani ◽  
Andrew J. Young ◽  
Michael N. Sawka ◽  
Kent B. Pandolf

This study examined whether serial cold-water immersions over a 10-h period would lead to fatigue of shivering and vasoconstriction. Eight men were immersed (2 h) in 20°C water three times (0700, 1100, and 1500) in 1 day (Repeat). This trial was compared with single immersions (Control) conducted at the same times of day. Before Repeat exposures at 1100 and 1500, rewarming was employed to standardize initial rectal temperature. The following observations were made in the Repeat relative to the Control trial: 1) rectal temperature was lower and heat debt was higher ( P < 0.05) at 1100; 2) metabolic heat production was lower ( P < 0.05) at 1100 and 1500; 3) subjects perceived the Repeat trial as warmer at 1100. These data suggest that repeated cold exposures may impair the ability to maintain normal body temperature because of a blunting of metabolic heat production, perhaps reflecting a fatigue mechanism. An alternative explanation is that shivering habituation develops rapidly during serially repeated cold exposures.


1959 ◽  
Vol 52 (3) ◽  
pp. 296-304 ◽  
Author(s):  
W. Bianca

1. Three calves were individually exposed in a climatic room to an environment of 45° C. dry-bulb and 28° C. wet-bulb temperature for 21 successive days up to 5 hr. each day.2. In the 21-day period, mostly during the first half of it, the following changes in the physiological reactions of the animals were observed: progressive reductions in rectal temperature, in heart rate and in respiratory rate with a change of breathing from a laboured to a less laboured type.3. It was suggested that a decrease in metabolic heat production might play a part in the observed acclimatization.


1979 ◽  
Vol 57 (12) ◽  
pp. 1401-1406 ◽  
Author(s):  
M. T. Lin ◽  
Andi Chandra ◽  
T. C. Fung

The effects of both systemic and central administration of phentolamine on the thermoregulatory functions of conscious rats to various ambient temperatures were assessed. Injection of phentolamine intraperitoneally or into a lateral cerebral ventricle both produced a dose-dependent fall in rectal temperature at room temperature and below it. At a cold environmental temperature (8 °C) the hypothermia in response to phentolamine was due to a decrease in metabolic heat production, but at room temperature (22 °C) the hypothermia was due to cutaneous vasodilatation (as indicated by an increase in foot and tail skin temperatures) and decreased metabolic heat production. There were no changes in respiratory evaporative heat loss. However, in the hot environment (30 °C), phentolamine administration produced no changes in rectal temperature or other thermoregulatory responses. A central component of action is indicated by the fact that a much smaller intraventricular dose of phentolamine was required to exert the same effect as intraperitoneal injection. The data indicate that phentolamine decreases heat production and (or) increases heat loss which leads to hypothermia, probably via central nervous system actions.


1979 ◽  
Vol 236 (1) ◽  
pp. R67-R74 ◽  
Author(s):  
A. S. Blix ◽  
J. W. Lentfer

At birth in late December the polar bear is small (700 g), uninsulated, and helpless. It probably has a modest capacity for metabolic heat production and depends on the female and a snow den in which it is born for thermal protection. The microclimate of an artificial polar bear den was investigated at Point Barrow, AK, and the temperature therein found to stay around 0 degrees C provided a heat source (200 W) equivalent to an adult polar bear was introduced. When the bears desert the den in early April the cub has grown to about 10 kg and has a well-developed fur insulation, but almost no subcutaneous fat. The cub has a high resting metabolic rate (4.6 W.kg-1), which is supported by the fat polar bear milk. Its lower critical temperature is about -30 degrees C, and an ambient temperature of -45 degrees C results in only a 33% increase in metabolism. The cub can tolerate a wind chill of 2.3 kW.m2 without apparent stress of drop in rectal temperature. If the cub is immersed in ice water rectal temperature drops 11 degrees C in 30 min. It is concluded that the cub can tolerate extremely low temperatures in air due to fur insulation and high metabolic heat production, but is unable to cope with the chill of ice water for any prolonged period of time.


1993 ◽  
Vol 73 (1) ◽  
pp. 207-210 ◽  
Author(s):  
A. Allan Degen ◽  
Bruce A. Young

Rate of metabolic heat production and rectal temperature were measured in steers (n = 4) standing in 0 (control), 10, 25 and 50 cm of water and in steers standing in 50 cm of water that were also showered. The measurements were done at air temperatures of 0 and 15 °C. There was no significant difference in the rate of metabolic heat production of the steers due to the two air temperatures. However, there was an increase in the rate of metabolic heat production of steers that stood in 50 cm water and were showered; by 39–56% over control steers. Rectal temperature was not affected by either air temperature or treatment. Key words: Steers, mud, rain, heat production, rectal temperature


1978 ◽  
Vol 56 (6) ◽  
pp. 963-967 ◽  
Author(s):  
M. T. Lin ◽  
C. F. Chen ◽  
I. H. Pang

Intraperitoneal administration of ketamine produced dose-dependent hypothermia at the ambient temperatures (Ta) of both 8 and 23 °C in unanesthetized rats. At a Ta of 8 °C, the hypothermia was brought about solely by a decrease in metabolic heat production. There were no changes in either the tail skin temperature (Ttail) or the sole skin temperature (Tsole). At a Ta of 23 °C, the hypothermia was due to an increase in Ttail, an increase in Tsole, and a decrease in metabolic heat production. However, at a Ta of 31 °C, there were no changes in rectal temperature in response to ketamine application, since neither heat production nor skin temperatures (e.g., Ttail and Tsole) was affected by ketamine at this Ta. The data indicate that the effect of the drug treatment may be to decrease heat production and (or) increase heat loss.


1988 ◽  
Vol 65 (5) ◽  
pp. 1984-1989 ◽  
Author(s):  
J. H. Bittel ◽  
C. Nonotte-Varly ◽  
G. H. Livecchi-Gonnot ◽  
G. L. Savourey ◽  
A. M. Hanniquet

The relationship between the physical fitness level (maximal O2 consumption, VO2max) and thermoregulatory reactions was studied in 17 adult males submitted to an acute cold exposure. Standard cold tests were performed in nude subjects, lying for 2 h in a climatic chamber at three ambient air temperatures (10, 5, and 1 degrees C). The level of physical fitness conditioned the intensity of thermoregulatory reactions to cold. For all subjects, there was a direct relationship between physical fitness and 1) metabolic heat production, 2) level of mean skin temperature (Tsk), 3) level of skin conductance, and 4) level of Tsk at the onset of shivering. The predominance of thermogenic or insulative reactions depended on the intensity of the cold stress: insulative reactions were preferential at 10 degrees C, or even at 5 degrees C, whereas colder ambient temperature (1 degree C) triggered metabolic heat production abilities, which were closely related to the subject's physical fitness level. Fit subjects have more efficient thermoregulatory abilities against cold stress than unfit subjects, certainly because of an improved sensitivity of the thermoregulatory system.


1995 ◽  
Vol 198 (7) ◽  
pp. 1499-1507 ◽  
Author(s):  
G E Walsberg ◽  
B O Wolf

We report the first empirical data describing the interactive effects of simultaneous changes in irradiance and convection on energy expenditure by live mammals. Whole-animal rates of solar heat gain and convective heat loss were measured for representatives of two ground squirrel species, Spermophilus lateralis and Spermophilus saturatus, that contrast in coloration. Radiative heat gain was quantified as the decrease in metabolic heat production caused by the animal's exposure to simulated solar radiation. Changes in convective heat loss were quantified as the variation in metabolic heat production caused by changes in wind speed. For both species, exposure to 780 W m-2 of simulated solar radiation significantly reduced metabolic heat production at all wind speeds measured. Reductions were greatest at lower wind speeds, reaching 42% in S. lateralis and 29% in S. saturatus. Solar heat gain, expressed per unit body surface area, did not differ significantly between the two species. This heat gain equalled 14-21% of the radiant energy intercepted by S. lateralis and 18-22% of that intercepted by S. saturatus. Body resistance, an index of animal insulation, declined by only 10% in S. saturatus and 13% in S. lateralis as wind speed increased from 0.5 to 4.0 ms-1. These data demonstrate that solar heat gain can be essentially constant, despite marked differences in animal coloration, and that variable exposure to wind and sunlight can have important consequences for both thermoregulatory stress experienced by animals and their patterns of energy allocation.


Sign in / Sign up

Export Citation Format

Share Document