Digital Transformation Enables Automated Real-Time Torque-and-Drag Modeling

2021 ◽  
Vol 73 (01) ◽  
pp. 69-70
Author(s):  
Chris Carpenter

This article, written by JPT Technology Editor Chris Carpenter, contains highlights of paper SPE 199670, “Digital Transformation Strategy Enables Automated Real-Time Torque-and-Drag Modeling,” by Dingzhou Cao, Occidental Petroleum; Don Hender, SPE, IPCOS; and Sam Ariabod, Apex Systems, et al., prepared for the 2020 IADC/SPE International Drilling Conference, Galveston, Texas, 3-5 March. The paper has not been peer reviewed. Automated real-time torque-and-drag (RT-T&D) analysis compares real-time measurements with evergreen models to monitor and manage downhole wellbore friction, improving drilling performance and safety. Enabling RT-T&D modeling with contextual well data, rig-state detection, and RT-interval event filters poses significant challenges. The complete paper presents a solution that integrates a physics-based T&D stiff/soft string model with a real-time drilling (RTD) analytics system using a custom-built extract, transform, and load (ETL) translator and digital-transformation applications to automate the T&D modeling work flow. Methodology A T&D representational state transfer (REST) application program interface (API) was integrated with an RTD analytics system capable of receiving and processing both real-time (hookload, torque, and rig-state) and digitized (drillstring and casing components, trajectory profiles, and mud-property) well data across multiple platforms. This strategy consists of four parts: Digital transformation apps, ETL, and translator Physics-based stiff/soft string T&D model API Pre-existing data infrastructure RTD analytics system The data-flow architecture reveals a flexible design in the sense that it can accommodate different types of T&D models or any other physics-based REST API models (e.g., drillstring buckling or drilling hydraulics) and can be accessed offline for prejob/post-job planning. Drilling engineers can also leverage the RTD systems’ historical database to perform recalculations, comparative analysis, and friction calibrations. The RT-T&D model also can be deployed in a cloud environment to ensure that horizontal scalability is achieved.

2015 ◽  
Vol 87 (11-12) ◽  
pp. 1127-1137
Author(s):  
Stuart J. Chalk

AbstractThis paper details an approach to re-purposing scientific data as presented on a web page for the sole purpose of making the data more available for searching and integration into other websites. Data ‘scraping’ is used to extract metadata from a set of pages on the National Institute of Standards and Technology (NIST) website, clean, organize and store the metadata in a MySQL database. The metadata is then used to create a new website at the authors institution using the CakePHP framework to create a representational state transfer (REST) style application program interface (API). The processes used for website analysis, schema development, database construction, metadata scraping, REST API development, and remote data integration are discussed. Lessons learned and tips and tricks on how to get the most out of the process are also included.


2021 ◽  
Vol 4 (3) ◽  
pp. 153-176
Author(s):  
Yongtak Park ◽  
Doyoung Kim

This study designs a reference model of the Defense REST API server based on the representational state transfer (REST) architecture style to present the most efficient, stable, and sustainable technical criteria for real-time service integration of defense information systems in Korea. The purpose of this component is to provide evidence to be stipulated as part of the Korean Defense Ministry's instructions and regulations, such as the Defense Interoperability Management Directive and the Interoperability Guide, and to support the development of the National Defense Interworking Technology and Interoperability. As the defense information system was subdivided and developed by the army, navy, air force, or business functions, interworking between information systems has become one of the most important factors. However, despite the need for advanced service integration and interworking, various interconnection service modules based on enterprise application integration (EAI), EAI hubs, and spokes were developed at a level that met local requirements (simple data transmission) without specific criteria for each network or information system. As a result, most of the interconnection modules currently in operation suffer from the absence of a technical spectrum, such as not meeting the military's demands for real-time interconnection and service integration, which increases with time. Therefore, this study seeks to identify the above problems by integrating the defense information system into one service and presenting a reference model of the defense REST API server to meet various real-time interworking requirements, analyze the technical basis, and pursue a model that fits military reality.


2015 ◽  
Author(s):  
Babak Heidari ◽  
Sook Ting Leong ◽  
Nguyen Truong Son ◽  
M Zafril Aznor

Abstract Real Time Drilling Geomechanics (RTDG) provides relevant real time information and integrated workflow to help clients in reducing operational risk and nonproductive time (NPT) through drilling in marginal economical and technically challenging environments. Dulang-B field is a technical challenge due to its complex structural geological environment. All the existing wells failed to penetrate into deep reservoir F40 sands due to wellbore instabilities issues. Overpressure in F-sands remains always the main concern and challenge which led to unsafe drilling environment and significant nonproductive time in the field. Avoiding drilling surprises means more than being prepared for problems when they occur; it means averting them in the first place. Appropriate safe mud weight to drill each formation, must be defined to overcome different overpressure zones and identify the best position for casing seat of each hole section of the well. With the knowledge acquired through pore pressure and fracture gradient modeling, well behavior could be foretold with enough advance notice to allow drilling team to calmly make technically sound operational decisions that lead to optimal drilling performance. This study presents the challenges and the main results of the collaborative drilling approach via RTDG (Real Time Drilling Geomechanics) operation in well DL-B28 ST2. This study focuses on the overpressure and narrow safe mud weight window as well as level of uncertainty over prognosis formation tops which has to be managed by integrating LWD seismicVISION* and RTDG which had clear impacts on decision making process. The real time measurement approach by utilizing actual well data provided the best solution to accurately constrain pre-drill pore pressure and fracture gradient model.


Author(s):  
Adian Fatchur Rochim ◽  
Abda Rafi ◽  
Adnan Fauzi ◽  
Kurniawan Teguh Martono

The use of information technology these days are very high. From business through education activities tend to use this technology most of the time. Information technology uses computer networks for integration and management data. To avoid business problems, the number of network devices installed requires a manageable network configuration for easier maintenance. Traditionally, each of network devices has to be manually configured by network administrators. This process takes time and inefficient. Network automation methods exist to overcome the repetitive process. Design model uses a web-based application for maintenance and automates networking tasks. In this research, the network automation system implemented and built a controller application that used REST API (Representational State Transfer Application Programming Interface) architecture and built by Django framework with Python programming language. The design modeled namely As-RaD System. The network devices used in this research are Cisco CSR1000V because it supports REST API communication to manage its network configuration and could be placed on the server either. The As-RaD System provides 75% faster performance than Paramiko and 92% than NAPALM.


2015 ◽  
Vol 137 (6) ◽  
Author(s):  
Yanfang Wang ◽  
Saeed Salehi

Real-time drilling optimization improves drilling performance by providing early warnings in operation Mud hydraulics is a key aspect of drilling that can be optimized by access to real-time data. Different from the investigated references, reliable prediction of pump pressure provides an early warning of circulation problems, washout, lost circulation, underground blowout, and kicks. This will help the driller to make necessary corrections to mitigate potential problems. In this study, an artificial neural network (ANN) model to predict hydraulics was implemented through the fitting tool of matlab. Following the determination of the optimum model, the sensitivity analysis of input parameters on the created model was investigated by using forward regression method. Next, the remaining data from the selected well samples was applied for simulation to verify the quality of the developed model. The novelty is this paper is validation of computer models with actual field data collected from an operator in LA. The simulation result was promising as compared with collected field data. This model can accurately predict pump pressure versus depth in analogous formations. The result of this work shows the potential of the approach developed in this work based on NN models for predicting real-time drilling hydraulics.


2016 ◽  
Author(s):  
M. Cui ◽  
G. H. Wang ◽  
H. Y. Ge ◽  
X. Z. Chen ◽  
H. W. Guo

2019 ◽  
Author(s):  
reine yolite

Nowadays most people remain connected via social media networks. This is a highly lucrative and expansive market for social enterprises to penetrate and evaluate the buying patterns of customers so that they can provide customized user experiences. Digital transformation provides countless advantages and options, including improved inventory management, detailed insights, enhanced real-time customer interaction, higher productivity, reliable forecasting, dependable business decisions, improved resourced allocation, and real time interaction with customers. This sort of technology and innovation, when coupled with digital business, lends support to the digital transformation of a company, providing it with the requisite degree of competitive advantage. Digital transformation helps businesses meet the demands of the changing digital economy. Also with the help of digital transformation, companies are finally able to go paperless. So with lots of this social enterprises in Asia that use or participant in digital transformation it can help them to meet customer expectation soon, and digital transformation is cost effective when social enterprises profits, the community or the society profits.


2021 ◽  
Author(s):  
Hector Hugo Vizcarra Marin ◽  
Alex Ngan ◽  
Roberto Pineda ◽  
Juan Carlos Gomez ◽  
Jose Antonio Becerra

Abstract Given the increased demands on the production of hydrocarbons and cost-effectiveness for the Operator's development wells, the industry is challenged to continually explore new technology and methodology to improve drilling performance and operational efficiency. In this paper, two recent case histories showcase the technology, drilling engineering, and real-time optimization that resulted in record drilling times. The wells are located on shallow water in the Gulf of Mexico, with numerous drilling challenges, which typically resulted in significant Non-Productive Time (NPT). Through close collaboration with the Operator, early planning with a clear understanding of offset wells challenges, well plan that minimize drilling in the Upper Cretaceous "Brecha" Formation were formulated. The well plan was also designed to reduce the risk of stuck pipe while meeting the requirements to penetrate the geological targets laterally to increase the area of contact in the reservoir section. This project encapsulates the successful application of the latest Push-the-Bit Rotary Steerable System (RSS) with borehole enlargement technology through a proven drilling engineering process to optimize the drilling bottomhole assembly, bit selection, drilling parameters, and real-time monitoring & optimization The records drilling times in the two case histories can be replicated and further improved. A list of lessons learned and recommendations for the future wells are discussed. These include the well trajectory planning, directional drilling BHA optimization, directional control plan, drilling parameters to optimize hole cleaning, and downhole shocks & vibrations management during drilling and underreaming operation to increase the drilling performance ultimately. Also, it includes a proposed drilling blueprint to continually push the limit of incremental drilling performance through the use of RSS with hydraulics drilling reamers through the Jurassic-age formations in shallow waters, Gulf of Mexico.


2021 ◽  
Author(s):  
Saif Al Arfi ◽  
Fatima AlSowaidi ◽  
Fernando Ruiz ◽  
Ibrahim Hamdy ◽  
Yousef Tobji ◽  
...  

Abstract To meet the current oil and gas market challenges, there is an industry need to optimize cost by safely drilling longer horizontal wells to maximize well productivity. Drilling challenges include the highly deviated trajectory that starts from the surface sections and wellhead, the high DogLeg Sevirity (DLS) profile with collision risks, and the thin complex geological structures, especially in new unconventional fields where numerous geological and geomechanical uncertainties are present. To mitigate for those challenges, reviewing the existing drilling techniques and technologies is necessary. To compete in the current Hi-Tech and Automation era, the main challenges for directional drilling service providers are to reduce well time, place wells accurately, and improve reliability, reducing repair and maintenance costs and helping the customer reduce time and costs for the overall project. Offset wells analysis and risk assessments allowed identifying the main challenges and problems during directional drilling phases, which were highlighted and summarized. As a proposed solution, the new generation of intelligent fully rotating high dogleg push-the-bit rotary steerable system has been implemented in the UAE onshore oil and gas fields to improve the directional drilling control and the performance. This implementation reduced the Non-Productive time (NPT) related to the human errors as the fully automation capabilities were being utilized. The new rotary steerable system has the highest mechanical specs in the market including self-diagnosis and self-prognosis through digital electronics and sophisticated algorithms that monitor equipment health in real-time and allow for managing the tool remotely. As a result, the new intelligent RSS was implemented in all possible complex wellbore conditions, such as wells with high DLS profile, drilling vertical, curve, and lateral sections in a single trip with high mud weight and high solid contents. Automation cruise control gave the opportunity to eliminate any well profile issues and maintain the aggressive drilling parameters. Using the Precise Near-bit Inclination and Azimuth and the At-Bit Gamma real-time data and high-frequency tool face measurements in the landing intervals where required for precise positional control to enable entering the reservoir in the correct location and with the correct attitude helping the customer's Geology and Geophysics department to place wells accurately while maintaining a high on bottom ROP.


2021 ◽  
Vol 2 (28) ◽  
pp. 15-19
Author(s):  
V. D. Sharipova ◽  

The article presents an analysis of publication activity in the field of data governance based on the Russian Science Citation Index and Scopus database. This area is relevant in application for leaders of digital transformation, for whom it is important to form a data infrastructure, support their error-free, unambiguous, and introduce definitions of terms. The paper presents a retrospective analysis of the intensity of publication and presents the authors and titles of articles with the highest citations. Key words: data governance, analysis of publications, Scopus, database, digital transformation.


Sign in / Sign up

Export Citation Format

Share Document