Technology Focus: Acidizing (June 2021)

2021 ◽  
Vol 73 (06) ◽  
pp. 48-48
Author(s):  
Frank Chang

Hydraulic fracturing technologies propagated from North America outward to other oil- and gas-producing regions in the world. In earlier days, the main technology developments were mostly related to the materials, such as fluids and proppants, and their characterizations. In recent years, more advancements have been made in tools, engineering processes, and analyses. In a cased-hole fracturing treatment, perforating plays a critical role to the success of the job, though it is often overlooked because perforations are visualized as holes with empty tunnel behind the pipe. Any damage is irrelevant because fracturing will simply bypass the damage. In fact, a shaped charge is made of metal liner and case with explosive loaded in between. The metal material is pushed into the formation under extremely high pressure from the detonation of the explosive. Without backflow of reservoir fluid to flush out the debris, the perforation tunnels are very likely plugged. In tight formations, the backflow is not efficient because the permeability is too low and the time scale of the surge is very short. Obtaining information about perforation before pumping the fracture treatment allows the engineers to adjust the job design, adding perforations or other means to deliver a more-desirable outcome for the fracturing treatment. Not all the wells or zones are suitable for hydraulic fracturing. Concerns over the well completion rating, nearby water layers, equipment and water availability, and other environmental and infrastructure constraints can limit the selection of stimulation method. Matrix chemical injection has often been the preferred or sometimes the only option. More-advanced technologies, however, are needed to extend reservoir access beyond the distance of matrix stimulation. Mechanical tunneling tools have been developed in recent years. They can bridge the gap between matrix and fracturing treatment very well. When combined with chemicals, this process can add efficiency in certain carbonate reservoirs. Hydrochloric acid continues to be the most effective and low-cost material for carbonate stimulation. Though exotic chemistries such as chelating agents and organic acids have been promoted for being less corrosive at high temperatures, the cost and dissolving capacity limit their use to large-scale implementation. The ability to inhibit the corrosion tendency of hydrochloric acid can prove to be beneficial in the economics of acidizing. New technologies in corrosion prevention, both in acid stimulation and production processes, should always be beneficial. During the tough year of 2020, and for the foreseeable future, implementation of engineering ingenuity will become more critical to maintain economical energy delivery in our industry. Recommended additional reading at OnePetro: www.onepetro.org. SPE 202369 Novel High-Effective Component for Acidizing Corrosion Inhibitors: Indolizine Derivatives of the Quaternary Quinolinium Salts by Zhen Yang, China University of Petroleum, et al. SPE 203086 First Successful Fishbone Stimulation Completion in Onshore Oil Field in the United Arab Emirates by Fernando Quintero, ADNOC, et al.

2019 ◽  
Vol 12 (3) ◽  
pp. 77-85
Author(s):  
L. D. Kapranova ◽  
T. V. Pogodina

The subject of the research is the current state of the fuel and energy complex (FEC) that ensures generation of a significant part of the budget and the innovative development of the economy.The purpose of the research was to establish priority directions for the development of the FEC sectors based on a comprehensive analysis of their innovative and investment activities. The dynamics of investment in the fuel and energy sector are considered. It is noted that large-scale modernization of the fuel and energy complex requires substantial investment and support from the government. The results of the government programs of corporate innovative development are analyzed. The results of the research identified innovative development priorities in the power, oil, gas and coal sectors of the fuel and energy complex. The most promising areas of innovative development in the oil and gas sector are the technologies of enhanced oil recovery; the development of hard-to-recover oil reserves; the production of liquefied natural gas and its transportation. In the power sector, the prospective areas are activities aimed at improving the performance reliability of the national energy systems and the introduction of digital technologies. Based on the research findings, it is concluded that the innovation activities in the fuel and energy complex primarily include the development of new technologies, modernization of the FEC technical base; adoption of state-of-the-art methods of coal mining and oil recovery; creating favorable economic conditions for industrial extraction of hard-to-recover reserves; transition to carbon-free fuel sources and energy carriers that can reduce energy consumption and cost as well as reducing the negative FEC impact on the environment.


2021 ◽  
Author(s):  
Ivan Krasnov ◽  
Oleg Butorin ◽  
Igor Sabanchin ◽  
Vasiliy Kim ◽  
Sergey Zimin ◽  
...  

Abstract With the development of drilling and well completion technologies, multi-staged hydraulic fracturing (MSF) in horizontal wells has established itself as one of the most effective methods for stimulating production in fields with low permeability properties. In Eastern Siberia, this technology is at the pilot project stage. For example, at the Bolshetirskoye field, these works are being carried out to enhance the productivity of horizontal wells by increasing the connectivity of productive layers in a low- and medium- permeable porous-cavernous reservoir. However, different challenges like high permeability heterogeneity and the presence of H2S corrosive gases setting a bar higher for the requirement of the well construction design and well monitoring to achieve the maximum oil recovery factor. At the same time, well and reservoir surveillance of different parameters, which may impact on the efficiency of multi-stage hydraulic fracturing and oil contribution from each hydraulic fracture, remains a challenging and urgent task today. This article discusses the experience of using tracer technology for well monitoring with multi-stage hydraulic fracturing to obtain information on the productivity of each hydraulic fracture separately.


2019 ◽  
Vol 944 ◽  
pp. 637-642
Author(s):  
Gu Fan Zhao ◽  
Wei Na Di ◽  
Rui Yao Wang

The oil and gas industry places higher demands for new technologies and new materials. Advanced functional materials show broad application prospects in the oil field. Technological advances in the oil and gas sector are inseparable from the development and application of advanced functional materials. Through literature research, patent search analysis, expert consultation, some advanced functional materials with potential application in the oil field are sorted out, in order to provide inspiration and new ideas for improving the development of the oil and gas drilling technology. The nanomaterials dispersion and nanocomposites films are two of the most accessible ways to apply nanomaterials in the oil field. The cellulose nanofibers (CNF) and the diamond-like carbon (DLC) nanocomposites films would provide inspiration for the oil field chemistry and protection of downhole tools. The application of CNF and DLC nanocomposites could provide innovative ideas, research and foundation for the future development of the oil and gas drilling technology, and contribute to achieving a major technological breakthrough and improve the overall level of the oil and gas drilling technology.


10.29173/alr2 ◽  
2015 ◽  
Vol 52 (2) ◽  
pp. 245
Author(s):  
Trent Mercier ◽  
Josh Kane ◽  
Sharbil Nammour

A cohesive master service agreement is a fundamental component of the operator–service provider relationship for the provision of oilfield services for upstream oil and gas operations. This article: explores the sometimes unique contract relationships found in the Canadian marketplace; provides an overview of key contentious issues and potential solutions, which are examined and contrasted with those seen in American and international contracts; and identifies recent relevant market trends, including special considerations for large-scale hydraulic fracturing operations and the perspectives of new international operators entering the Canadian marketplace.


2020 ◽  
Vol 17 (34) ◽  
pp. 892-904
Author(s):  
Zinon A KUANGALIEV ◽  
Gulsin S DOSKASIYEVA ◽  
Altynbek S MARDANOV

The main part of Russia's hard-to-recover reserves is 73% for low-grade and carbonate reservoirs, 12% for high-viscosity oil, about 15% of extensive sub-gas zones of oil and gas deposits and 7% of reservoirs lying at great depths. The development of such stocks with the usage of traditional technologies is economically inefficient. It requires the application of new technologies for their development and fundamentally new approaches to design, taking into account the features of extraction of hard-to-extract reserves (HtER). The purpose of this research is to find ways to improve the performance of low-permeability reservoirs. To accomplish this task, the Novobogatinsk South-Eastern Oil Field has been taken as an example and described. The necessary properties of production facilities in the field are highlighted, along with economic feasibility and technological efficiency. The reserves involved in the development are determined and, thanks to the knowledge of the geological oil reserves of the deposits, the potential oil recovery factor is calculated with the existing development technology. As a result of the research, development options were worked out with the results of the calculation of design indicators for the field as a whole. The comparison of oil recovery schedules and ORI, as well as the layout of wells, have been presented. As a result of the study, a description of 3 options for the development of design indicators for the field as a whole is given. The figures show oil production graphs, as well as location patterns. The authors of the study conclude which of the recommended development options can help extract maximum oil reserves.


Ocean Science ◽  
2021 ◽  
Vol 17 (6) ◽  
pp. 1677-1751
Author(s):  
Helen E. Phillips ◽  
Amit Tandon ◽  
Ryo Furue ◽  
Raleigh Hood ◽  
Caroline C. Ummenhofer ◽  
...  

Abstract. Over the past decade, our understanding of the Indian Ocean has advanced through concerted efforts toward measuring the ocean circulation and air–sea exchanges, detecting changes in water masses, and linking physical processes to ecologically important variables. New circulation pathways and mechanisms have been discovered that control atmospheric and oceanic mean state and variability. This review brings together new understanding of the ocean–atmosphere system in the Indian Ocean since the last comprehensive review, describing the Indian Ocean circulation patterns, air–sea interactions, and climate variability. Coordinated international focus on the Indian Ocean has motivated the application of new technologies to deliver higher-resolution observations and models of Indian Ocean processes. As a result we are discovering the importance of small-scale processes in setting the large-scale gradients and circulation, interactions between physical and biogeochemical processes, interactions between boundary currents and the interior, and interactions between the surface and the deep ocean. A newly discovered regional climate mode in the southeast Indian Ocean, the Ningaloo Niño, has instigated more regional air–sea coupling and marine heatwave research in the global oceans. In the last decade, we have seen rapid warming of the Indian Ocean overlaid with extremes in the form of marine heatwaves. These events have motivated studies that have delivered new insight into the variability in ocean heat content and exchanges in the Indian Ocean and have highlighted the critical role of the Indian Ocean as a clearing house for anthropogenic heat. This synthesis paper reviews the advances in these areas in the last decade.


Food Security ◽  
2022 ◽  
Author(s):  
Jason Donovan ◽  
Pieter Rutsaert ◽  
Ciro Domínguez ◽  
Meliza Peña

AbstractWhere maize plays a critical role in food security, governments and donors have invested heavily in support of local, privately owned, often small and medium sized, maize seed enterprises (maize SMEs). Underpinning these investments are strong assumptions about maize SMEs’ capacity to produce and distribute seed to smallholders. This study assesses the capacities of 22 maize SMEs in Mexico that engaged with MasAgro—a large-scale development program initiated in 2011 that has provided maize SMEs with improved genetic material and technical assistance. Data were collected onsite from in-depth interviews with enterprise owners and managers and complemented with other primary and secondary sources. Overall, maize SMEs showed high levels of absorptive capacity for seed production, but limited signs of learning and innovation in terms of business organization and strategic seed marketing. Asset endowments varied widely among the SMEs, but generally they were lowest among the smaller enterprises, and access to business development services beyond MasAgro was practically nonexistent. Results highlighted the critical role of MasAgro in reinvigorating the portfolios of seeds produced by maize SMEs, as well as the challenges ahead for maize SMEs to scale the new technologies in a competitive market that has long been dominated by multinational seed enterprises. Among these challenges were limited investment in seed marketing, weak infrastructure for seed production, and limited experience in business management. Achieving the food security goals through maize SMEs will require making national maize seed industry development a strategic imperative.


2021 ◽  
Author(s):  
Adhi Naharindra ◽  
Zalina Ali ◽  
Nik Fazril Ain Sapi’an ◽  
Latief Riyanto ◽  
Fuziana Tusimin ◽  
...  

Abstract Increased HSE concerns and global economic efficiency from well testing activities especially on its environmental impact have left several oil and gas industries’ facing critical challenges to develop and monetize oil reserves. Some of these challenges include handling well effluents from well test unloading operations after well completion with high contaminants such as H2S and CO2 which will exacerbate environmental impact to safety, pollution, and oil spill risks. In addition, mitigation to environmental impact will be constrained to limited deck space and topside loads for offshore wellhead facilities and eventually restricts the footprint of well test unloading equipment. The scope of the paper is to examine the evolution of well deliverability testing from conventional well test facilities’ flaring practices to contemporary smokeless and zero flaring operations applied in a giant sand stones oil field in Malaysian water, which is surrounded by a world class environmentally protected marine and coastal ecosystem. The zero-flaring approach allows a demonstration of the safety & emission reduction, cost saving, technical viability, and economic benefits over traditional flaring techniques for 20 to 30 well testing during the life of field. Previous wells clean up method require flaring of oil and gas before the production facilities and flow lines were operational.commissioned. The application of environment friendly well testing system using the completed flow lines and production facilities enable zero-flaring option to be technically and economically viable. Zero-flaring well testing system provides several attractive benefits, with potential reduction in flaring equivalent of ±1000 barrels of oil, pollution avoidance, 40 - 50% schedule reduction and over 40% reduction in total project costs for the field development..


2021 ◽  
Vol 54 (2E) ◽  
pp. 86-103
Author(s):  
Bashar Al-Juraisy

The velocity deviation technique is one of the important techniques in hydrocarbon investigations, through which it is possible to identify the types and the content of rock pores. The current study aimed to demonstrate the benefit of this technique in discovering the oil sites of the Khasib formation in the East Baghdad oil field, as well as the possibility of separating the oil and gas zones by combining the velocity deviation technique with the anomalous primary porosity information that leads to negative secondary porosity. In this study, log data of three wells distributed in the study area (EB-04, EB-16, and EB-34) were used. From these data, the velocity was estimated by the sonic log, the porosity was estimated by the neutron and the density log, while the velocity deviation was determined by subtracting the velocity calculated from the density log from the sonic log velocity. The result showed that there is significant agreement between the secondary porosity values that turned positive after the oil effect was removed and the confirmed oil zones derived from the core information. Also, there was a clear correlation between velocity deviation values above -500 m/s and the permeability zone of formation, which may reflect the importance of this technique in the identification of the permeability zone. Both techniques (Velocity Deviation and log porosity analysis) can be correlated to predict the locations of gas, large-scale fractures, and unconsolidated beds in sites of high negative secondary porosity and low-velocity deviation (under -500 m/s).


Sign in / Sign up

Export Citation Format

Share Document