Physical Characteristics of Natural Films Formed at Crude Oil-Water Interfaces

1966 ◽  
Vol 6 (02) ◽  
pp. 153-165 ◽  
Author(s):  
O.K. Kimbler ◽  
R.L. Reed ◽  
I.H. Silberberg

Abstract Interfacial films have frequently been observed at interfaces between certain crude oils and water. Several investigators have postulated that the presence of these films should influence the efficiency of oil recovery in water drive or waterflood operations. They may also influence the stability of emulsions which are sometimes a problem in petroleum production, and may be a factor in the formation of paraffin deposits in oil well tubing and flow lines. This paper presents a technique with which a modified Langmuir film balance may be used to study the compressibility and collapse pressure of these natural interfacial films. Experimental data are presented for several crude oil-water systems. Data developed are used to infer the phase state of the film as a function of such variables as rate of reduction of interfacial area, ionic composition of the subtrate and pH of the subtrate. A film of known physical characteristics is shown to have a significant effect on oil recovery from an unconsolidated sand pack. Possible applications of these results to petroleum production are discussed. INTRODUCTION The use of water to displace petroleum from reservoir rocks is of major importance both as a primary and a secondary recovery process. As water invades the rock, oil is completely displaced from some pores and left as a discontinuous phase in other pores. The manner in which water moves from pore to pore is strongly influenced by capillary forces. In view of the complexity of reservoir fluid systems, there can be little doubt that complicated interactions take place at both the liquid-solid and oil-water interfaces. One of the more interesting, and least understood, of the phenomena which take place at the oil-water interface is the formation of interfacial films. These films are believed to result from the adsorption of high molecular weight polar molecules at the interface.1,2 Presence of such molecules may cause a striking alteration in interfacial tension. When the oil-water interfacial area of certain crudes is rapidly reduced, a thin region (film) about the interface assumes the appearance of a solid membrane, and striations, wrinkles and gross distortions may occur. If such a film is solid, it should greatly alter the interfacial tension normally assumed to exist between the oil and water phases. If the membrane is continuous, a solid phase would separate the oil and water. Interfacial films between crude oil and water were observed in 1949 by Bartell and Niederhauser3 who commented upon the apparent rigidity of the films and their possible importance in the petroleum industry. Morrell and Egloff4 had earlier attributed the extreme stability of emulsions of sea water in fuel oil to very stable asphaltic films. Numerous investigators have observed rigid films in the course of crude oil-water interfacial tension determinations by the pendent drop method. Several investigators5,6,2 have separated interfacially active materials from crudes and attempted to characterize them chemically. Reisberg and Doscher,2 using Ventura crude, showed the interfacial tension against water (as measured by the pendent drop method) to be affected by aging, contraction and expansion of the interface, and the pH of the water. These investigators attributed the adhesion of oil to a water-wetted surface and the distortions of flow paths in glass capillaries to the presence of rigid films. Dodd7 has studied the interfacial viscosity of adsorbed films and found them to be non-Newtonian in behavior. Craighead and Harvey8 reported a series of displacements in tubes packed with 60 mesh glass beads. They interpreted the results as indicating an effect of stearic acid films on waterflood recovery and imply that natural films may produce similar results.

2021 ◽  
Vol 5 (3) ◽  
pp. 42
Author(s):  
Ronald Marquez ◽  
Johnny Bullon ◽  
Ana Forgiarini ◽  
Jean-Louis Salager

The oscillatory spinning drop method has been proven recently to be an accurate technique to measure dilational interfacial rheological properties. It is the only available equipment for measuring dilational moduli in low interfacial tension systems, as it is the case in applications dealing with surfactant-oil-water three-phase behavior like enhanced oil recovery, crude oil dehydration, or extreme microemulsion solubilization. Different systems can be studied, bubble-in-liquid, oil-in-water, microemulsion-in-water, oil-in-microemulsion, and systems with the presence of complex natural surfactants like asphaltene aggregates or particles. The technique allows studying the characteristics and properties of water/oil interfaces, particularly when the oil contains asphaltenes and when surfactants are present. In this work, we present a review of the measurements of crude oil-brine interfaces with the oscillating spinning drop technique. The review is divided into four sections. First, an introduction on the oscillating spinning drop technique, fundamental and applied concepts are presented. The three sections that follow are divided according to the complexity of the systems measured with the oscillating spinning drop, starting with simple surfactant-oil-water systems. Then the complexity increases, presenting interfacial rheology properties of crude oil-brine systems, and finally, more complex surfactant-crude oil-brine systems are reviewed. We have found that using the oscillating spinning drop method to measure interfacial rheology properties can help make precise measurements in a reasonable amount of time. This is of significance when systems with long equilibration times, e.g., asphaltene or high molecular weight surfactant-containing systems are measured, or with systems formulated with a demulsifier which is generally associated with low interfacial tension.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1073 ◽  
Author(s):  
Goshtasp Cheraghian ◽  
Sara Rostami ◽  
Masoud Afrand

Nanoparticles (NPs) are known as important nanomaterials for a broad range of commercial and research applications owing to their physical characteristics and properties. Currently, the demand for NPs for use in enhanced oil recovery (EOR) is very high. The use of NPs can drastically benefit EOR by changing the wettability of the rock, improving the mobility of the oil drop and decreasing the interfacial tension (IFT) between oil/water. This paper focuses on a review of the application of NPs in the flooding process, the effect of NPs on wettability and the IFT. The study also presents a review of several investigations about the most common NPs, their physical and mechanical properties and benefits in EOR.


1975 ◽  
Vol 15 (03) ◽  
pp. 197-202 ◽  
Author(s):  
Harley Y. Jenning

Abstract This paper presents the results of a study of caustic solution-crude oil interfacial tension measurements on 164 crude oils from 78 fields. Of these crude oils 131 showed marked surface activity against caustic solutions. Surface activity of crude oil against caustic solution correlates with the acid number, gravity, and viscosity. Almost all crude oils with gravities of 20 degrees API or lower produced a caustic solution-crude oil interfacial produced a caustic solution-crude oil interfacial tension less than 0.01 dyne/cm. Of the interfacially active samples, 90 percent reached maximum measurable surface activity at a caustic concentration of close to 0.1 percent by weight. The dissolved solids content of the water bas a marked influence on the surface activity. Sodium chloride in solution reduces the caustic concentration required to give maximum surface activity. Conversely, calcium chloride in solution suppresses surface activity. Introduction The oil-production technology literature contains a number of papers that indicate that the addition of sodium hydroxide to the flood water beneficially affects oil recovery. Although the proposed recovery mechanisms differ in detail, a variable common to almost all is the interfacial tension between caustic solutions and crude oil. A study of the factors influencing caustic solution-crude oil interfacial tensions is fundamental to an understanding of the proposed mechanisms and their optimum utilization. proposed mechanisms and their optimum utilization. We have obtained interfacial tensions against caustic solutions of 164 crudes. These crudes come from all major oil-producing areas in the free world. In addition to determining the correlation of interfacial tension with crude oil properties of acid number, gravity, and viscosity, we have also determined the effect of certain dissolved solids in the water. We define acid number as the number of milligrams of potassium hydroxide required to neutralize the acid in one gram of sample. The interfacial tension data were obtained by the pendent-drop method. pendent-drop method. EXPERIMENTAL PROCEDURE The caustic solutions used in this study were prepared by adding reagent-grade sodium hydroxide prepared by adding reagent-grade sodium hydroxide to laboratory distilled water. Our standard solutions were made from a 50 percent by weight reagent-grade sodium hydroxide solution. For convenience in relating our laboratory data to possible field application, the data were recorded and plotted in terms of weight percent sodium hydroxide. The pH of the caustic solutions was determined experimentally using a Coming expanded-scale pH meter; and the densities of the caustic solutions were measured experimentally using a Chainomatic Westphal balance. CRUDE OILS The crude oils were protected from the atmosphere and were collected in carefully cleaned glass or, when practicable, in plastic-lined containers. The crude oil samples were free of chemical additives, such as emulsion breakers and corrosion inhibitors. If the oil contained suspended solid material it was dehydrated and filtered. The densities were determined by the Westphal balance; and the viscosities were determined as a function of temperature using a glass capillary viscometer. APPARATUS AND EXPERIMENTAL PROCEDURE The interfacial tension measurements described in this study were made by the pendent-drop method. The pendent-drop method is based on the formation of a drop of liquid on a tip, the drop being slightly smaller than that which will spontaneously detach itself from the tip. The profile of this drop is magnified by projection and can be recorded on a photosensitive emulsion. The interfacial tension is photosensitive emulsion. The interfacial tension is calculated from the dimensions of the drop profile, a knowledge of be densities of the liquid forming. the drop, and the bulk phase surrounding the drop. All interfacial tensions described in this paper were recorded at a temperature of 74 degrees F and at an interface age of 10 seconds. Most systems were studied as a function of temperature; but temperature was found to be a second-order effect, so we selected 74 degrees F in order that all correlations would be at constant temperature. We selected 10 seconds because a study of the time variable showed that most of the decay of interfacial tension with time in these systems had occurred by the end of 10 seconds. SPEJ P. 197


Fuel ◽  
2017 ◽  
Vol 191 ◽  
pp. 239-250 ◽  
Author(s):  
Sivabalan Sakthivel ◽  
Sugirtha Velusamy ◽  
Vishnu Chandrasekharan Nair ◽  
Tushar Sharma ◽  
Jitendra S. Sangwai

2018 ◽  
Vol 11 (1) ◽  
pp. 118-128
Author(s):  
Hongbo Fang ◽  
Mingxia Wang ◽  
Xiaoyun Liu ◽  
Weinan Jin ◽  
Xiangyang Ma ◽  
...  

Background: A hydraulic fracture is a key technology to increase production of the low permeability oil fields. Fracture additives such as gels, friction reducers, pH adjusters and clay stabilizers were injected into the underground. While more than 50% of the fracture fluid remains underground. The residue of fracture fluid comes out with the produced liquid (a mixture of crude oil and water) in the subsequent oil recovery process, which results in a highly stable crude oil-water emulsion. Objective: The stability and stable mechanism of the emulsion with fracture fluid have been experimentally investigated. Materials and Methods: The influences of fracture additives and components of crude oil on the stability of emulsion were investigated by bottle test and microscopic examination. The interfacial tension and modulus of dilation were explored by a spinning drop interfacial tension meter and an interface expansion rheometer, respectively. Results: The fracture additives played the key role on the emulsion stability. On one hand, the interface energy of oil-water was reduced by friction reducer (IFT was decreased from 24.0 mN/m to 1.9 mN/m), which was a favor for the formation of an emulsion. On the other hand, the dilational modulus of crude oil-water film was increased by hydroxypropyl guar and pH adjuster (Na2CO3) to form a viscoelastic film, which resulted in a highly stable emulsion. Conclusion: The residual fracture fluid accompanied by produced liquid resulted in a highly stable emulsion. The emulsion with fracture additives was difficult to be broken, which may affect the normal production of the oil field. A positive strategy such as developing demulsifier with high efficient should be put onto the schedule.


SPE Journal ◽  
2021 ◽  
pp. 1-13
Author(s):  
I. W. R. Saputra ◽  
D. S. Schechter

Summary Oil/water interfacial tension (IFT) is an important parameter in petroleum engineering, especially for enhanced-oil-recovery (EOR) techniques. Surfactant and low-salinity EOR target IFT reduction to improve oil recovery. IFT values can be determined by empirical correlation, but widely used thermodynamic-based correlations do not account for the surface-activities characteristic of the polar/nonpolar interactions caused by naturally existing components in the crude oil. In addition, most crude oils included in these correlations come from conventional reservoirs, which are often dissimilar to the low-asphaltene crude oils produced from shale reservoirs. This study presents a novel oil-composition-based IFT correlation that can be applied to shale-crude-oil samples. The correlation is dependent on the saturates/aromatics/resins/asphaltenes (SARA) analysis of the oil samples. We show that the crude oil produced from most unconventional reservoirs contains little to no asphaltic material. In addition, a more thorough investigation of the effect of oil components, salinity, temperature, and their interactions on the oil/water IFT is provided and explained using the mutual polarity/solubility concept. Fifteen crude-oil samples from prominent US shale plays (i.e., Eagle Ford, Middle Bakken, and Wolfcamp) are included in this study. IFT was measured in systems with salinity from 0 to 24% and temperatures up to 195°F.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6234
Author(s):  
Xu Jiang ◽  
Ming Liu ◽  
Xingxun Li ◽  
Li Wang ◽  
Shuang Liang ◽  
...  

Surfactants and nanoparticles play crucial roles in controlling the oil-water interfacial phenomenon. The natural oil-wet mineral nanoparticles that exist in crude oil could remarkably affect water-oil interfacial characteristics. Most of recent studies focus on the effect of hydrophilic nanoparticles dispersed in water on the oil-water interfacial phenomenon for the nanoparticle enhanced oil recovery. However, studies of the impact of the oil-wet nanoparticles existed in crude oil on interfacial behaviour are rare. In this study, the impacts of Span 80 surfactant and hydrophobic SiO2 nanoparticles on the crude oil-water interfacial characteristics were studied by measuring the dynamic and equilibrium crude oil-water interfacial tensions. The results show the existence of nanoparticles leading to higher crude oil-water interfacial tensions than those without nanoparticles at low surfactant concentrations below 2000 ppm. At a Span 80 surfactant concentration of 1000 ppm, the increase of interfacial tension caused by nanoparticles is largest, which is around 8.6 mN/m. For high Span 80 surfactant concentrations, the less significant impact of nanoparticles on the crude oil-water interfacial tension is obtained. The effect of nanoparticle concentration on the crude oil-water interfacial tension was also investigated in the existence of surfactant. The data indicates the less significant influence of nanoparticles on the crude oil-water interfacial tension at high nanoparticle concentration in the presence of Span 80 surfactant. This study confirms the influences of nanoparticle-surfactant interaction and competitive surfactant molecule adsorption on the nanoparticles surfaces and the crude oil-water interface.


1978 ◽  
Vol 18 (06) ◽  
pp. 409-417 ◽  
Author(s):  
D.T. Wasan ◽  
S.M. Shah ◽  
N. Aderangi ◽  
M.S. Chan ◽  
J.J. McNamara

Original manuscript received in Society of Petroleum Engineers office Sept. 20, 1977. Paper accepted for publication June 2, 1978. Revised manuscript received Aug. 2, 1978. Paper (SPE 6846) was presented at SPE-AIME 52nd Annual Fall Technical Conference and Exhibition, held in Denver, Oct. 9-12, 1977. Abstract Results of experiments on the coalescence of crude oil drops at an oil-water interface and interdroplet coalescence in crude oil-water emulsions containing petroleum sulfonates and cosurfactant as surfactant systems with other chemical additives were analyzed in terms of interracial viscosity, interfacial tension, interfacial charge, and thickness of the films surrounding the microdroplets. A qualitative correlation was found between coalescence rates and interfacial viscosities; however, there appears to be no direct correlation with interfacial tension. New insight has been gained into the influence of emulsion stability in tertiary oil recovery by surfactant/polymer flooding in laboratory core tests. We concluded that those systems that result in relatively stable emulsions yield poor coalescence rates and, hence, poor oil recovery, Introduction The ability of the surfactant/polymer system to initiate and to propagate an oil bank is the single most important feature of a successful tertiary oil-recovery process. The mechanisms of oil-bank formation and development are yet unknown. It has been suggested that without the initiation of the oil bank, the process behaves more like the unstable injection of a surfactant solution alone, where the oil is produced by entrainment or emulsification in the flowing surfactant stream. In a laboratory study of the initial displacement of residual hydrocarbons by aqueous surfactant solutions, Childress and Schechter and Wade observed that those systems that spontaneously emulsified and coalesced rapidly yielded better oil recovery than those systems that spontaneously formed stable emulsions. Recently, Strange and Talash, Whitley and Ware, and Widmeyer et al. reported results of Salem (IL) low-tension, water-flood tests that used Witco TRS 10-80 TM petroleum sulfonate surfactant solution. They found stable oil-in-water emulsions at the observer well in addition to emulsion problems at the production well and reported that problems at the production well and reported that actual oil recovery was about one-quarter the target value. These studies clearly suggested that poor efficiency of oil recovery results from emulsion stability problems in the low-tension surfactant or micellar processes. Vinatieri presented results of experiments on the stability of crude-oil-in-water emulsions that coo be produced during a surfactant or micellar flood. More recently, we have assessed the rigidity of interfacial films and its relationship to coalescence rate through measurements of interfacial viscosities of crude oils contacted against aqueous solutions containing various concentrations of surfactants and other pertinent chemical additives. Our data clearly indicate that in the absence of a commercial surfactant, interfacial viscosity builds up rapidly, coalescence is inhibited, and the resulting emulsion is quite stable. These phenomena also have been observed by Gladden and Neustadter. Several studies were conducted on the structure of film-forming material at the crude oil/water interface, its effect on emulsion stability, and the role of such films in oil recovery by water or caustic solution displacements. Rigid films were found to reduce the amount of oil recovered. Our studies also have shown that the addition of a commercial surfactant lowered both the interfacial viscosity (ISV) and interfacial tension (IFT) of the crude oil-aqueous solution system. However, the concentration at which both the IFT and ISV are minimized cannot be identified by measuring IFT alone. We have conducted a cinephotomicrographic examination of spontaneous emulsification and a microvisual study of the displacement of residual crude oil by aqueous surfactant solutions in micromodel porous media. SPEJ P. 409


2021 ◽  
Author(s):  
Xu-Guang Song ◽  
Ming-Wei Zhao ◽  
Cai-Li Dai ◽  
Xin-Ke Wang ◽  
Wen-Jiao Lv

AbstractThe ultra-low permeability reservoir is regarded as an important energy source for oil and gas resource development and is attracting more and more attention. In this work, the active silica nanofluids were prepared by modified active silica nanoparticles and surfactant BSSB-12. The dispersion stability tests showed that the hydraulic radius of nanofluids was 58.59 nm and the zeta potential was − 48.39 mV. The active nanofluids can simultaneously regulate liquid–liquid interface and solid–liquid interface. The nanofluids can reduce the oil/water interfacial tension (IFT) from 23.5 to 6.7 mN/m, and the oil/water/solid contact angle was altered from 42° to 145°. The spontaneous imbibition tests showed that the oil recovery of 0.1 wt% active nanofluids was 20.5% and 8.5% higher than that of 3 wt% NaCl solution and 0.1 wt% BSSB-12 solution. Finally, the effects of nanofluids on dynamic contact angle, dynamic interfacial tension and moduli were studied from the adsorption behavior of nanofluids at solid–liquid and liquid–liquid interface. The oil detaching and transporting are completed by synergistic effect of wettability alteration and interfacial tension reduction. The findings of this study can help in better understanding of active nanofluids for EOR in ultra-low permeability reservoirs.


Sign in / Sign up

Export Citation Format

Share Document