Pressure Drop versus Flow Rate Profiles for Power-Law and Herschel-Bulkley Fluids

Author(s):  
A.O. Omosebi ◽  
K.A. Adenuga
Keyword(s):  
2012 ◽  
Vol 170-173 ◽  
pp. 2601-2608
Author(s):  
Xue Li Xia ◽  
Hong Fu Qiang ◽  
Wang Guang

To evaluate the effect of a converging injector geometry, volumetric flow rate and gallant content on the pressure drop, the velocity and viscosity fields, the governing equations of the steady, incompressible, isothermal, laminar flow of a Power-Law, shear-thinning gel propellant in a converging injector were formulated, discretized and solved. A SIMPLEC numerical algorithm was applied for the solution of the flow field. The results indicate that the mean apparent viscosity decreases with increasing the volumetric flow rate and increasing the gallant content results in an increase in the viscosity. The results indicate also that the convergence angle can produce additional decrease in the mean apparent viscosity of the fluid. The mean apparent viscosity decreases significantly with increasing the convergence angle of the injector, and its value is limited by the Newtonian viscosity η∞. The effect of the convergence angle on the mean apparent viscosity is more significant than the effect of the volumetric flow rate and the gallant content on the mean apparent viscosity. Additional decreasing the viscosity results in increasing the pressure drop with increasing convergence angle. It is important to injector design that the viscosity decreasing and the pressure drop increasing are took into account together.


1982 ◽  
Vol 104 (3) ◽  
pp. 182-186 ◽  
Author(s):  
J. B. Shukla ◽  
S. P. Gupta

Effects of the consistency variation on the peristaltic transport of a non-Newtonian power-law fluid fluid through a tube have been investigated by taking into account the existence of a peripheral layer. It is shown that the flow rate flux, for zero pressure drop, increases as the amplitude of the peristaltic wave increases but it decreases due to the pseudoplastic nature of the fluid. It is also noted that, for zero pressure drop, the flux does not depend on the consistency of peripheral layer while the friction decreases as this consistency decreases. However, for nonzero pressure drop, the flux increases and the friction force decreases as the consistency of peripheral layer fluid decreases.


2018 ◽  
Vol 23 (1) ◽  
pp. 187-211 ◽  
Author(s):  
A. Walicka

AbstractIn this paper, an analytical method for deriving the relationships between the pressure drop and the volumetric flow rate in laminar flow regimes of Newtonian and power-law fluids through symmetrically corrugated capillary fissures and tubes is presented. This method, which is general with regard to fluid and capillary shape, can also be used as a foundation for different fluids, fissures and tubes. It can also be a good base for numerical integration when analytical expressions are hard to obtain due to mathematical complexities. Five converging-diverging or diverging-converging geometrics, viz. wedge and cone, parabolic, hyperbolic, hyperbolic cosine and cosine curve, are used as examples to illustrate the application of this method. For the wedge and cone geometry the present results for the power-law fluid were compared with the results obtained by another method; this comparison indicates a good compatibility between both the results.


Author(s):  
Abhijit Sinha Roy ◽  
Lloyd H. Back ◽  
Ronald W. Millard ◽  
Saeb Khoury ◽  
Rupak K. Banerjee

Simultaneous measurement of pressure and flow rate has been found to be helpful in evaluating the physiologic significance of obstructive coronary artery disease and in the diagnosis of microvascular disease. This experimental study seeks to find important pressure-flow relationship in an in-vitro model of significant coronary artery stenoses using a non-Newtonian liquid, similar to blood showing a shear thinning behavior, using significant stenotic in-vitro model (minimal area stenosis = 90%). The geometry for the stenotic model is based on data provided in an in vivo study by Wilson et al., (1988). For 90% area stenosis, the maximum recorded pressure drop for steady flow rate of 55, 79 and 89 are 14, ~24 and ~32 mmHg respectively. The maximum pressure drop at flow rate of 115 ml/min (the physiological limit) is 50.3 mmHg respectively. Using a power law curve fit, the maximum pressure drop (in mmHg) related with flow rate (in ml/min) provided a power law index of 1.72. Shorter distal length than required in the in-vitro model did not allow the recording of complete pressure recovery. This preliminary data provides reference values for further experimentation both in vitro with pulsatile flow as in physiological conditions, and in vivo.


2021 ◽  
Vol 3 ◽  
Author(s):  
Subhadeep Roy ◽  
Santanu Sinha ◽  
Alex Hansen

Immiscible two-phase flow of Newtonian fluids in porous media exhibits a power law relationship between flow rate and pressure drop when the pressure drop is such that the viscous forces compete with the capillary forces. When the pressure drop is large enough for the viscous forces to dominate, there is a crossover to a linear relation between flow rate and pressure drop. Different values for the exponent relating the flow rate and pressure drop in the regime where the two forces compete have been reported in different experimental and numerical studies. We investigate the power law and its exponent in immiscible steady-state two-phase flow for different pore size distributions. We measure the values of the exponent and the crossover pressure drop for different fluid saturations while changing the shape and the span of the distribution. We consider two approaches, analytical calculations using a capillary bundle model and numerical simulations using dynamic pore-network modeling. In case of the capillary bundle when the pores do not interact to each other, we find that the exponent is always equal to 3/2 irrespective of the distribution type. For the dynamical pore network model on the other hand, the exponent varies continuously within a range when changing the shape of the distribution whereas the width of the distribution controls the crossover point.


2018 ◽  
Vol 13 (3) ◽  
pp. 1-10 ◽  
Author(s):  
I.Sh. Nasibullayev ◽  
E.Sh Nasibullaeva ◽  
O.V. Darintsev

The flow of a liquid through a tube deformed by a piezoelectric cell under a harmonic law is studied in this paper. Linear deformations are compared for the Dirichlet and Neumann boundary conditions on the contact surface of the tube and piezoelectric element. The flow of fluid through a deformed channel for two flow regimes is investigated: in a tube with one closed end due to deformation of the tube; for a tube with two open ends due to deformation of the tube and the differential pressure applied to the channel. The flow rate of the liquid is calculated as a function of the frequency of the deformations, the pressure drop and the physical parameters of the liquid.


Author(s):  
Nihad Dukhan ◽  
Angel Alvarez

Wind-tunnel pressure drop measurements for airflow through two samples of forty-pore-per-inch commercially available open-cell aluminum foam were undertaken. Each sample’s cross-sectional area perpendicular to the flow direction measured 10.16 cm by 24.13 cm. The thickness in the flow direction was 10.16 cm for one sample and 5.08 cm for the other. The flow rate ranged from 0.016 to 0.101 m3/s for the thick sample and from 0.025 to 0.134 m3/s for the other. The data were all in the fully turbulent regime. The pressure drop for both samples increased with increasing flow rate and followed a quadratic behavior. The permeability and the inertia coefficient showed some scatter with average values of 4.6 × 10−8 m2 and 2.9 × 10−8 m2, and 0.086 and 0.066 for the thick and the thin samples, respectively. The friction factor decayed with the Reynolds number and was weakly dependent on the Reynolds number for Reynolds number greater than 35.


1996 ◽  
Vol 118 (1) ◽  
pp. 29-35 ◽  
Author(s):  
K. Minemura ◽  
K. Egashira ◽  
K. Ihara ◽  
H. Furuta ◽  
K. Yamamoto

A turbine flowmeter is employed in this study in connection with offshore oil field development, in order to measure simultaneously both the volumetric flow rates of air-water two-phase mixture. Though a conventional turbine flowmeter is generally used to measure the single-phase volumetric flow rate by obtaining the rotational rotor speed, the method proposed additionally reads the pressure drop across the meter. After the pressure drop and rotor speed measured are correlated as functions of the volumetric flow ratio of the air to the whole fluid and the total volumetric flow rate, both the flow rates are iteratively evaluated with the functions on the premise that the liquid density is known. The evaluated flow rates are confirmed to have adequate accuracy, and thus the applicability of the method to oil fields.


Sign in / Sign up

Export Citation Format

Share Document