Transient Coupled Borehole/Formation Fluid-Flow Model for Interpretation of Oil/Water Production Logs

SPE Journal ◽  
2016 ◽  
Vol 22 (01) ◽  
pp. 389-406 ◽  
Author(s):  
Amir Frooqnia ◽  
Carlos Torres-Verdín ◽  
Kamy Sepehrnoori ◽  
Rohollah Abdhollah-Pour

Summary Interpretation of two-phase production logs (PLs) traditionally constructs borehole fluid-flow models decoupled from the physics of reservoir rocks. However, quantifying formation dynamic petrophysical properties from PLs requires simultaneous modeling of both borehole and formation fluid-flow phenomena. This paper develops a novel transient borehole/formation fluid-flow model that allows quantification of the effect of formation petrophysical properties on measurements acquired with production-logging tools (PLTs). We invoke a 1D, isothermal, two-fluid formulation to simulate borehole fluid-phase velocity, pressure, volume fraction, and density in oil/water-flow systems. The developed borehole fluid-flow model implements oil-dominant and water-dominant bubbly flow regimes with the inversion point taking place approximately when the oil volume fraction is equal to 0.5. Droplet diameter is dynamically modified to simulate interfacial drag effects, and to effectively account for variations of slip velocity in the borehole. Subsequently, a new successive iterative method interfaces the borehole and formation fluid-flow models by introducing appropriate source terms into the borehole fluid-phase mass-conservation equations. The novel iterative coupling method integrated with the developed borehole fluid-flow model allows dynamic modification of reservoir boundary conditions to accurately simulate transient behavior of borehole crossflow taking place across differentially depleted rock formations. In the case of rapid variations of near-borehole properties, frequent borehole/formation communication inevitably increases the computational time required for fluid-flow simulation. Despite this limitation, in a two-layer reservoir model penetrated by a vertical borehole, the coupling method accurately quantifies a 14% increase of volume-averaged oil-phase relative permeability of the low-pressure layer caused by through-the-borehole cross-communication of differentially depleted layers. Sensitivity analyses indicate that the alteration of near-borehole petrophysical properties primarily depends on formation average pressure, fluid-phase density contrast, and borehole-deviation angle. A practical application of the new coupled fluid-flow model is numerical simulation of borehole production measurements to estimate formation average pressure from two-phase selective-inflow-performance (SIP) analysis. This study suggests that incorporating static (shut-in) PL passes into the SIP analysis could result in misleading estimation of formation average pressure.

2012 ◽  
Vol 594-597 ◽  
pp. 2490-2494
Author(s):  
Yi Kun Liu ◽  
Shuang Liang ◽  
Xin Wan ◽  
Yang Xuan

Base on the non-Darcy flow problem in low permeability reservoirs, the oil-water two phase radial fluid flow model considering threshold pressure gradient is established, the output and formation pressure distribution formulas are obtained,the production variation rule and the influence threshold pressure gradient on formation pressure distribution of different permeability and different well spacing are discussed, the reasonable well spacing of different threshold pressure gradient is calculated. Research shows that, the smaller the permeability, the bigger the corresponding threshold pressure gradient, the faster the production shortfall; in the same permeability, the greater the well spacing, the less the output; the fluid flow requires energy expenditure to overcome threshold pressure gradient, the smaller the permeability, the greater the resistance, the faster the formation pressure descent near wellbore. The reasonable well spacing for effective production is obtained by output formula, which provides the scientific foundation for improving the development effects.


The traffic flow conditions in developing countries are predominantly heterogeneous. The early developed traffic flow models have been derived from fluid flow to capture the behavior of the traffic. The very first two-equation model derived from fluid flow is known as the Payne-Whitham or PW Model. Along with the traffic flow, this model also captures the traffic acceleration. However, the PW model adopts a constant driver behavior which cannot be ignored, especially in the situation of heterogeneous traffic.This research focuses on testing the PW model and its suitability for heterogeneous traffic conditions by observing the model response to a bottleneck on a circular road. The PW model is mathematically approximated using the Roe Decomposition and then the performance of the model is observed using simulations.


2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Zhiru Yang ◽  
Dongfeng Diao ◽  
Xue Fan ◽  
Hongyan Fan

Nanoparticles-laden gas film (NLGF) was formed by adding SiO2 nanoparticles with volume fraction in the range of 0.014–0.330% and size of 30 nm into the air gas film in a thrust bearing. An effective viscosity of the gas-solid two phase lubrication media was introduced. The pressure distribution in NLGF and the load capacity of the thrust bearing were calculated by using the gas-solid two phase flow model with the effective viscosity under the film thicknesses range of 15–60 μm condition. The results showed that the NLGF can increase the load capacity when the film thickness is larger than 30 μm. The mechanism of the enhancement effect of load capacity was attributed to the increase of the effective viscosity of the NLGF from the pure air film, and the novel lubrication media of the NLGF can be expected for the bearing industry application.


2018 ◽  
Vol 19 (4) ◽  
pp. 401 ◽  
Author(s):  
Ahmed Zeeshan ◽  
Nouman Ijaz ◽  
Muhammad Mubashir Bhatti

This article addresses the influence of particulate-fluid suspension on asymmetric peristaltic motion through a curved configuration with mass and heat transfer. A motivation for the current study is that such kind of theory is helpful to examine the two-phase peristaltic motion between small muscles during the propagation of different biological fluids. Moreover, it is also essential in multiple applications of pumping fluid-solid mixtures by peristalsis, i.e., Chyme in small intestine and suspension of blood in arteriole. Long wavelength, as well as small Reynolds number, have been utilized to render the governing equations for particle and fluid phase. Exact solutions are presented for velocity (uf,p), temperature (θf,p) and concentration distributions (φf,p). All the parameters such as Prandtl number (Pr), particle volume fraction (C), suspension parameter (M1), curvature parameter (k), volumetric flow rate (Q), Schmidt number (Sc), phase difference (φ), Eckert number (Ec), and Soret number (Sr) discussed graphically for peristaltic pumping (Δp), pressure gradient (dp/dx), velocity (uf,p), temperature (θf,p) and concentration distributions (φf,p). The streamlines are also plotted with the aid of contour.


2020 ◽  
Vol 24 (2 Part B) ◽  
pp. 1045-1054 ◽  
Author(s):  
Mehdi Ahmadi ◽  
Farsani Khosravi

In this paper, the numerical solution of non-Newtonian two-phase fluid-flow through a channel with a cavity was studied. Carreau-Yasuda non-Newtonian model which represents well the dependence of stress on shear rate was used and the effect of n index of the model and the effect of input Reynolds on the attribution of flow were considered. Governing equations were discretized using the finite volume method on staggered grid and the form of allocating flow parameters on staggered grid is based on marker and cell method. The QUICK scheme is employed for the convection terms in the momentum equations, also the convection term is discretized by using the hybrid upwind-central scheme. In order to increase the accuracy of making discrete, second order Van Leer accuracy method was used. For mixed solution of velocity-pressure field SIMPLEC algorithm was used and for pressure correction equation iteratively line-by-line TDMA solution procedure and the strongly implicit procedure was used. As the results show, by increasing Reynolds number, the time of sweeping the non-Newtonian fluid inside the cavity decreases, the velocity of Newtonian fluid increases and the pressure decreases. In the second section, by increasing n index, the velocity increases and the volume fraction of non-Newtonian fluid after cavity increases and by increasing velocity, the pressure decreases. Also changes in the velocity, pressure and volume fraction of fluids inside the channel and cavity are more sensible to changing the Reynolds number instead of changing n index.


2016 ◽  
Vol 366 ◽  
pp. 126-134
Author(s):  
Cidronia Janiclebia de O. Buriti ◽  
Lígia Rafaely Barbosa Sarmento ◽  
Gicélia Moreira ◽  
Severino Rodrigues de Farias Neto ◽  
Antonio Gilson Barbosa de Lima

Oil transport is used mainly by pipeline networks to transport oil from refineries and distributions points to the consumers. This is the main way to transport oils especially in areas of difficult access, ensuring efficiency, lowest cost and safety. In the chemical and petroleum industry it is possible to observe the presence of leak in the pipes, which has stimulated the development of reliable techniques for the rapid and accurate detection of leaks along the pipe in order to eliminate or minimize loss and environmental damage. In this context, this study aims to evaluate the effect of the numerical presence of leakage of two-phase flow (oil-water) pipe connections using the commercial software ANSYS CFX. The results from the fields of pressure, velocity and volume fraction are presented and assessed for illustrating the effect of the presence of the leak in the dynamic flow in the pipe with a curved connection.


1982 ◽  
Vol 24 (4) ◽  
pp. 221-224 ◽  
Author(s):  
M. B. Carver

Multidimensional computational analysis of fluid flow is usually done by segmented iterative methods, as the equations sets generated are too large to permit simultaneous solution. Frequently the need arises to compute values for variables which must remain bounded for physical reasons. In two-phase computation, for example, the volume fraction is restricted to values between 0 and 1, but iterative procedures often return intermediate values which violate these bounds. It is fairly straightforward to prevent negative values, however no satisfactory method of imposing the upper limit has been published. A method of smoothly applying the limit in reversible fashion is outlined in this note.


Author(s):  
Zhuting Jiang ◽  
Xiang Ning ◽  
Tao Duan ◽  
Nanxing Wu ◽  
Dongling Yu

In order to improve the whirling phenomenon of Si3N4 particles in the granulation chamber, the influence of the structure of the granulation chamber on the internal distribution is explored. Euler Euler’s two-phase flow model is established. The flow field in the combined structure granulation chamber with different layout is simulated. The volume distribution and velocity field change of Si3N4 particles in the combined structure granulation chamber with different layout are analyzed. The results show that the angle between two adjacent composite structures is 20∘, 60∘, 80∘ and completely standard the Si3N4 particles with volume fraction index greater than 0.8 account for 10.2%, 11.5%, 12.5% and 6.7% of the total volume respectively. When the combined structure is completely standard, several small convolutions are found. The whirling phenomenon in the granulation chamber is improved. When the angle between two adjacent composite structures is 20∘, 60∘, 80∘ and complete standard, the proportion of qualified particles is 59%, 64%, 66% and 68%. The fluidity index is 84, 85, 87 and 88, respectively. To sum up, the combination structure of the granulation chamber is a complete standard, it is beneficial to improve the spin phenomenon of Si3N4 particles in the granulation chamber.


Sign in / Sign up

Export Citation Format

Share Document