Thermofluidodynamic Evaluation of Oil-Water Flow in the Presence of a Leak in Curved Connection: Modeling and Simulation

2016 ◽  
Vol 366 ◽  
pp. 126-134
Author(s):  
Cidronia Janiclebia de O. Buriti ◽  
Lígia Rafaely Barbosa Sarmento ◽  
Gicélia Moreira ◽  
Severino Rodrigues de Farias Neto ◽  
Antonio Gilson Barbosa de Lima

Oil transport is used mainly by pipeline networks to transport oil from refineries and distributions points to the consumers. This is the main way to transport oils especially in areas of difficult access, ensuring efficiency, lowest cost and safety. In the chemical and petroleum industry it is possible to observe the presence of leak in the pipes, which has stimulated the development of reliable techniques for the rapid and accurate detection of leaks along the pipe in order to eliminate or minimize loss and environmental damage. In this context, this study aims to evaluate the effect of the numerical presence of leakage of two-phase flow (oil-water) pipe connections using the commercial software ANSYS CFX. The results from the fields of pressure, velocity and volume fraction are presented and assessed for illustrating the effect of the presence of the leak in the dynamic flow in the pipe with a curved connection.

2014 ◽  
Vol 348 ◽  
pp. 58-63 ◽  
Author(s):  
Lígia Rafaely Barbosa Sarmento ◽  
B.E. Leite ◽  
Severino Rodrigues de Farias Neto ◽  
Antônio Gilson Barbosa de Lima

The oil industry has sought to minimize the environmental impact from mining activities and oil transportation. The oil transportation by pipeline is subject to failures and leaks that cause financial losses and environmental damage, often irreparable. In this sense, the aim of this study is to evaluate the influence of the leak diameter in the behavior of the two-phase flow (oil and water) in a pipe. A transient and incompressible multiphase flow mathematical model based on the particle model was used here. Oil is the dispersed phase while water is the continuous phase. To model the turbulence effect it was used the standard k-ε model. All simulations were carried out using the Ansys CFX® commercial code. Results of the pressure, velocity and volumetric fraction of the phases are presented and discussed. The results confirm the difficulty to detect leakage with small diameters.


Author(s):  
Sahand Pirouzpanah ◽  
Sujan Reddy Gudigopuram ◽  
Gerald L. Morrison

Electrical Submersible Pumps (ESPs) are used in upstream petroleum industry for pumping liquid-gas mixtures. The presence of gas in the flow reduces the efficiency of ESPs. To investigate the effect of gas in the flow medium, Electrical Resistance Tomography (ERT) is performed on the two diffuser stages in a three-stage ESP which was manufactured by Baker Hughes Company. In an ERT system, the relative conductivity of the two-phase fluid mixture in comparison with the conductivity of pure liquid is measured which is used to obtain the Gas Volume Fraction (GVF) and mixture concentration. The measured GVF and concentration is used to characterize the flow for different flow rates of water and air, inlet pressures and rotating speeds.


2000 ◽  
Vol 122 (4) ◽  
pp. 169-176 ◽  
Author(s):  
Yuri V. Fairuzov ◽  
Pedro Arenas-Medina ◽  
Jorge Verdejo-Fierro ◽  
Ruben Gonzalez-Islas

Full-scale experiments were conducted in order to investigate flow pattern transitions in horizontal pipelines carrying oil-water mixtures. In the experiments, a 16-in. pipeline conveying light crude oil was used. The line was connected to a freshwater network to control the input water volume fraction. A gate valve installed at the pipeline inlet controlled the oil flow rate. The transition from stratified flow to dispersed flow was determined by measuring the transversal water fraction profile. For this purpose, a special device, the multi-point sampling probe, was designed and installed into the pipeline. The probe has movable sampling tubes that allow taking samples simultaneously at six points along the diameter of the pipe. The rate of withdrawal of each sample was adjusted by a needle valve according to the mixture velocity in order to minimize the effect of the probe on the measured water fraction profile. The samples were analyzed for water content in a laboratory using a standard method for determining the water fraction in crude oils. Based on the data obtained, a flow pattern map was constructed. The experimental stratified/nonstratified transition boundary was compared with two theoretical criteria obtained in the linear stability analysis of stratified two-phase liquid-liquid flow. The results of this study can be useful for the design and operation of pipelines transporting crude oil, as well as for the validation of multifield multidimensional models of two-phase flow. [S0195-0738(00)00404-0]


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Qingchun Gao ◽  
Zhiming Wang ◽  
Quanshu Zeng

Oil-water two-phase flow through the complex pipeline, consisting of varying pipes and fittings in series or parallel, is commonly encountered in the petroleum industry. However, the majority of the current study is mainly limited to single constant-radius pipe. In this paper, a unified model of oil-water two-phase flow in the complex pipeline is developed based on the combination of pipe serial-parallel theory, flow pattern transformation criterion, two-fluid model, and homogenous model. A case is present to verify the unified model and compare with CFD results. The results show that the proposed unified model can achieve excellent performance in predicting both the flow distributions and pressure drops of oil-water two-phase flow in the complex pipeline. Compared with CFD results for water volumetric fractions ranging from 0% to 100%, the highest absolute percentage error of the proposed model is 14.4% and the average is 9.8%.


2017 ◽  
Vol 2 (2) ◽  
pp. 57-63
Author(s):  
Abdullah A. Kendoush ◽  
Hameed B. Mahood ◽  
Ibrahim G. Fiadh

A neutron beam has been used to measure the volume fraction of crude oil in water of non- flow two-phase mixture experimentally.241Am-Be neutron source were used with an activity of 3.7x104 MBq. The volume fraction was simulated by using small plastic tubes filled with oil and immersed in non-flow water tube. The results show that it is feasible to measure the volume fraction of crude oil in a crude oil-water mixture.


SPE Journal ◽  
2016 ◽  
Vol 22 (01) ◽  
pp. 389-406 ◽  
Author(s):  
Amir Frooqnia ◽  
Carlos Torres-Verdín ◽  
Kamy Sepehrnoori ◽  
Rohollah Abdhollah-Pour

Summary Interpretation of two-phase production logs (PLs) traditionally constructs borehole fluid-flow models decoupled from the physics of reservoir rocks. However, quantifying formation dynamic petrophysical properties from PLs requires simultaneous modeling of both borehole and formation fluid-flow phenomena. This paper develops a novel transient borehole/formation fluid-flow model that allows quantification of the effect of formation petrophysical properties on measurements acquired with production-logging tools (PLTs). We invoke a 1D, isothermal, two-fluid formulation to simulate borehole fluid-phase velocity, pressure, volume fraction, and density in oil/water-flow systems. The developed borehole fluid-flow model implements oil-dominant and water-dominant bubbly flow regimes with the inversion point taking place approximately when the oil volume fraction is equal to 0.5. Droplet diameter is dynamically modified to simulate interfacial drag effects, and to effectively account for variations of slip velocity in the borehole. Subsequently, a new successive iterative method interfaces the borehole and formation fluid-flow models by introducing appropriate source terms into the borehole fluid-phase mass-conservation equations. The novel iterative coupling method integrated with the developed borehole fluid-flow model allows dynamic modification of reservoir boundary conditions to accurately simulate transient behavior of borehole crossflow taking place across differentially depleted rock formations. In the case of rapid variations of near-borehole properties, frequent borehole/formation communication inevitably increases the computational time required for fluid-flow simulation. Despite this limitation, in a two-layer reservoir model penetrated by a vertical borehole, the coupling method accurately quantifies a 14% increase of volume-averaged oil-phase relative permeability of the low-pressure layer caused by through-the-borehole cross-communication of differentially depleted layers. Sensitivity analyses indicate that the alteration of near-borehole petrophysical properties primarily depends on formation average pressure, fluid-phase density contrast, and borehole-deviation angle. A practical application of the new coupled fluid-flow model is numerical simulation of borehole production measurements to estimate formation average pressure from two-phase selective-inflow-performance (SIP) analysis. This study suggests that incorporating static (shut-in) PL passes into the SIP analysis could result in misleading estimation of formation average pressure.


Author(s):  
Si Huang ◽  
Abdulmajeed Mohamad ◽  
K. Nandakumar

An agitated two-phase flow and the mixing progress in an oil-water stirred tank are studied numerically using FLUENT software. The stirred cylindrical tank is equipped with an axial-type turbine and a radial-type impeller. The full Eulerian multiphase approach coupled with the standard turbulence model is performed to deal with two-phase flow with a higher volume fraction of the second (dispersed) phase. The computation is completed by using unstructured meshes in a multiple reference frame (MRF). For the initial condition of the simulation, oil is set on the top part of the tank with 30% of the total fluid volume. The simulation is conducted to get distributions of two-phase flow speed, pressure and volume fraction and to successfully illustrate how the mixing of two-phase components progresses in the stirred tank. The computational results obtained in this study would be useful for explaining the two-phase flow patterns on the mixing process and extending the applications of multiphase stirred reactors.


2021 ◽  
Vol 39 (1) ◽  
pp. 219-226
Author(s):  
Haixia Hu ◽  
Wei Luo ◽  
Qinghua Wang ◽  
Junzheng Yang ◽  
Xiaoyan Zhang ◽  
...  

The oil-water and gas-water relative permeability curves are important reference data for the dynamic analysis and numerical simulation of oil and gas reservoir exploitation. Although the petroleum industry of China and other countries have formulated reference standards for the measuring methods of relative permeability of cores, they haven’t given the definite reference values of the core length, therefore we cannot know for sure whether different core length values are required in the measurement and whether the core length has an impact on the measurement results. In view of this gap, this paper conducted a research on the relative permeability of cores with different lengths. The core samples are artificial core with similar properties as the outcrop cores of the Halfaya Oilfield (Iraq), in our experiment, the oil-water and gas-water relative permeability curves of the sample cores were measured and the results suggest that, for the oil-water relative permeability curves, as the core length grows, the iso-permeability points move to the right, and they basically stabilize when the core length is greater than 20cm; as for gas-water relative permeability curves, in case of low-permeability cores, under constant injection pressure, as the core length grows, the iso-permeability points and the two-phase co-permeation areas present an obvious tendency of moving to the left, but when the core length is greater than 20cm, such tendency is not obvious, and the high-permeability cores do not have such characteristics. These results indicate that, the unsteady-state two-phase relative permeability measurement experiments obtained accurate results at a core length of about 20cm, which provided a reference for similar experiments in subsequent research.


Sign in / Sign up

Export Citation Format

Share Document