Whirl Simulation of Drill Collar and Estimation of Cumulative Fatigue Damage on Drill-Collar Connection

SPE Journal ◽  
2017 ◽  
Vol 23 (02) ◽  
pp. 286-300 ◽  
Author(s):  
Dapeng Zhao ◽  
Sigve Hovda ◽  
Sigbjørn Sangesland

Summary Most drill-collar-connection failures are attributed to cumulative fatigue caused by bending vibration. An important class of bending vibration is whirl, which is formed by the eccentricity of the rotational drill collar. The contact between the drill collar and the borehole causes extreme harmful backward whirl, even chaotic whirl. A two-degree-of-freedom nonlinear lumped-mass model is used to represent the drill collar in whirl. Unlike other studies, the stick/slip vibration causing fluctuation of rotary speed is taken into account. In this lumped-element model, the contact forces obey the Hertzian contact law, which leads to lateral bounce of the drill collar and affects the borehole wall chaotically. The modified Karnopp friction model is adopted to simulate the stick/slip rotary vibration of the bottomhole assembly (BHA). On the basis of the time-domain responses of whirl, the continuous-bending-stress history is broken down into individual stress ranges with an associated number of stress cycles using the rainflow-counting method. The cumulative fatigue damage is estimated using Miner's rule. The conclusion of this paper indicates that chaotic lateral vibration and fatigue damage happen at a lower rotational speed than previously reported.

Author(s):  
Chao Liu ◽  
Dongxiang Jiang ◽  
Jingming Chen

Crack failures continually occur in shafts of turbine generator, where grid disturbance is an important cause. To estimate influences of grid disturbance, coupled torsional vibration and fatigue damage of turbine generator shafts are analyzed in this work, with a case study in a 600MW steam unit in China. The analysis is the following: (i) coupled system is established with generator model and finite element method (FEM)-based shafts model, where the grid disturbance is signified by fluctuation of generator outputs and the shafts model is formed with lumped mass model (LMM) and continuous mass model (CMM), respectively; (ii) fatigue damage is evaluated in the weak location of the shafts through local torque response computation, stress calculation, and fatigue accumulation; and (iii) failure-prevention approach is formed by solving the inverse problem in fatigue evaluation. The results indicate that the proposed scheme with continuous mass model can acquire more detailed and accurate local responses throughout the shafts compared with the scheme without coupled effects or the scheme using lumped mass model. Using the coupled torsional vibration scheme, fatigue damage caused by grid disturbance is evaluated and failure prevention rule is formed.


2013 ◽  
Vol 655-657 ◽  
pp. 1296-1299
Author(s):  
Li Juan Yu ◽  
Zhao Jun Yang ◽  
Fu You Liu

Gear machine tool main drive shaft to avoid resonance problem is studied.The force of the drive shaft is analyzed, and the vibration form of the drive shaft is confirmed. Using the lumped parameter method to simplify the main drive shaft, the lumped mass model and the force model were been obtained. When bending vibrating, the natural frequency of the main drive shaft is calculated using the transfer matrix method. The calculated critical speed is 43755r/min, which far outweighs the motor rated speed .It means that the drive shaft under normal work won't be resonance, which accords with the request of production.


2013 ◽  
Vol 4 (1) ◽  
pp. 167-183 ◽  
Author(s):  
G. Kouroussis ◽  
O. Verlinden

Abstract. The multibody approach is now recognized as a reliable and mature computer aided engineering tool. Namely, it is commonly used in industry for the design of road or railway vehicles. The paper presents a framework developed for predicting the vibrations induced by railway transportation. Firstly, the vehicle/track subsystem is simulated, on the basis of the home-made C++ library EasyDyn, by mixing the multibody model of the vehicle and the finite element model of the track, coupled to each other through the wheel/rail contact forces. Only the motion in the vertical plane is considered, assuming a total symmetry between left and right rails. This first step produces the time history of the forces exerted by the ballast on the foundation, which are then applied to a full 3-D FEM model of the soil, defined under the commercial software ABAQUS. The paper points out the contribution of the pitch motion of the bogies and carbodies which were neglected in previous publications, as well as the interest of the so-called coupled-lumped mass model (CLM) to represent the influence of the foundation in the track model. The potentialities of the model are illustrated on the example of the Thalys high-speed train, riding at 300 km h−1 on the Belgian site of Mévergnies.


1970 ◽  
Vol 39 (2) ◽  
pp. 86-94 ◽  
Author(s):  
Rajib Ul Alam Uzzal ◽  
Waiz Ahmed ◽  
Subhash Rakheja

This paper presents the responses of the railway vehicle and track components in terms of contact forces and displacements. The considered vehicle model is a five-DOF pitch-plane lumped parameter quarter car model supported on two-dimensional track systems comprising three layers. The car body is linked with the vehicle bogie through secondary suspension springs and damper elements, which is further linked to the wheels through primary suspension springs and damper elements. In modeling of the track, the rail is considered as an infinitely long beam discretely supported by a series of springs, dampers and masses representing the elasticity and damping effects of the rail pads, ballasts, and subgrades respectively. The non-linear Hertzian contact theory is employed to accomplish the dynamic interactions between the lumped mass vehicle and the continuous rail. The drastic effect of one wheel flat to the other perfect wheel-rail contact point is also taken into account. Keywords: Wheel flat, pitch-plane vehicle, wheel-rail impact, component force. doi:10.3329/jme.v39i2.1851 Journal of Mechanical Engineering, Vol. ME39, No. 2, Dec. 2008 86-94


1975 ◽  
Vol 97 (2) ◽  
pp. 561-565 ◽  
Author(s):  
J. P. Sadler

The lumped-parameter method for the elastodynamic analysis of mechanisms is applied to a particular case for which existing experimental evidence is available. The mechanism analyzed is a planar four-bar linkage, and the calculated results include steady-state deflection and stress and strain responses associated with the bending vibration of the three moving links. The analytical model is based on nonlinear differential equations derived by way of Euler-Bernoulli beam theory, and numerical solution is obtained through the use of a digital computer. Comparison of the analytical and experimental results shows very good agreement, supporting the use of the lumped-parameter approach in analyses of this type.


2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Lingnan Hu ◽  
Alan Palazzolo ◽  
Mansour Karkoub

Violent drillstring vibrations in a well should be suppressed to prevent premature failure of the drillstring parts and borehole wall and enhance the drilling process. This paper presents novel centralized impact dampers and torsional vibration dampers for lateral and torsional stick–slip vibration suppression which will function well in the harsh environment in the well due to their all-metal construction. A drillstring vibration model is used in this paper to simulate coupled lateral and torsional vibrations of the drillstring with impact and torsional dampers installed in the drill collar (DC). The high-fidelity model utilizes Timoshenko beam finite elements (FEs) and includes stress-stiffening effects to account for the gravity and axial loading effect on the transverse string stiffness. The rotational motions of the impactors result from dry friction tangential contact forces that occur when they contact the DC or sub. The tangential forces utilize a nonlinear Hertzian contact restoring force and a nonlinear, viscous contact damping force, in place of the typical coefficient of restitution (COR) model that cannot provide the required normal and tangential contact forces. The primary conclusions drawn from the simulation results are: (1) both the lateral vibration of the drillstring that is close to the bending critical speeds and the vibration induced by destabilizing forces can be suppressed by impact dampers and (2) the torsional stick–slip motion of the drillstring can be mitigated by the torsional damper.


1994 ◽  
Vol 47 (7) ◽  
pp. 227-253 ◽  
Author(s):  
R. A. Ibrahim

This part provides a comprehensive account of the main theorems and mechanisms developed in the literature concerning friction-induced noise and vibration. Some of these mechanisms are based on experimental investigations for classical models. Bilinear and nonlinear dynamical models have been considered to explain such friction phenomena as stick-slip, chatter, squeal, and chaos. Nonlinear modeling includes two types of nonlinearities which differ from those encountered in structural dynamics. These nonlinearities, in addition to the observed uncertainty of friction between sliding surfaces, form a formidable difficulty in developing accurate and reliable modeling. They include the inherent nonlinearity of contact forces (eg, Hertzian contact), and the nonlinear relationship between friction and sliding relative velocity. Research activities in this area are a mixture of theoretical, numerical, and experimental investigations. Theoretical investigations are prevailed by deterministic analysis with few attempts of stochastic treatment. The models include classical and practical engineering models such as the mass-spring model sliding on a running belt or on a surface with Hertzian contact, a pin sliding on a rotating disk, beams with friction boundaries, turbine blades, water-lubricated bearings, wheel-rail systems, disc brake systems and machine cutting tools. There is a strong need for further research to promote our understanding of the various friction mechanisms and to provide designers of sliding components with better guidelines to minimize the deteriorating effects of friction.


2021 ◽  
Author(s):  
Etienne Purcell ◽  
Amir R. Nejad ◽  
Mostafa Valavi ◽  
Anriëtte Bekker

Abstract In this paper, the importance of maintenance of marine propulsion is discussed with specific focus on the use of condition monitoring to inform maintenance schedules. The design requirements of DNV GL for shafts expected to operate in ice infested waters is adapted and a method is proposed to calculate the short-term fatigue damage during ice impacts. This method uses the Palmgren-Miner rule to calculate fatigue damage based on a transient, lumped-mass model simulation of the shaft with ice loads calculated from shaft measurements using inverse methods. Relevant sources of uncertainty in this assessment method are identified and quantified in order to express the short-term fatigue damage in a stochastic form. Sources of uncertainty include uncertainty in the calculation of ice loads, uncertainty of the transient analysis and uncertainty regarding the actual failure of the shaft as predicted by the S-N material curve and the Palmgren-Miner method. Uncertainties that influence the stress history are found to be the greatest contributor to fatigue damage uncertainty. A method is discussed that calculates the remaining useful life of the shaft as a function of short-term fatigue damage and the identified sources of uncertainty. The S.A. Agulhas is used as a case study to quantify the fatigue damage.


Author(s):  
J Shippen

This paper describes a technique for the calculation of a lumped-mass representation of a human based on acceleration of body locations, typically obtained from a three-dimensional motion tracking system, and external forces and torques, typically measured from a force plate. The inverse problem of solving for lumped masses is presented, which results in a mass model of the individual subject via a fast, fully automated approach. This method can be used to obtain the mass model per se for the identification of growth deformities or together with a kinematic model for inverse and forward dynamics. Furthermore the mass model and acceleration trajectories subsequently can be used to calculate the contact forces between the floor and the subject at locations remote to a force plate.


2000 ◽  
Vol 123 (4) ◽  
pp. 661-669 ◽  
Author(s):  
Fitsum A. Tariku ◽  
Robert J. Rogers

In many mechanical systems, the tendency of sliding components to intermittently stick and slip leads to undesirable performance, vibration, and control behaviors. Computer simulations of mechanical systems with friction are difficult because of the strongly nonlinear behavior of the friction force near zero sliding velocity. In this paper, two improved friction models are proposed. One model is based on the force-balance method and the other model uses a spring-damper during sticking. The models are tested on hundreds of lumped mass-spring-damper systems with time-varying excitation and normal contact forces for both one-dimensional and two-dimensional stick-slip motions on a planar surface. Piece-wise continuous analytical solutions are compared with solutions using other published force-balance and spring-damper friction models. A method has been developed to set the size of the velocity window for Karnopp’s friction model. The extensive test results show that the new force-balance algorithm gives much lower sticking velocity errors compared to the original method and that the new spring-damper algorithm exhibits no spikes at the beginning of sticking. Weibull distributions of the sticking velocity errors enable maximum errors to be estimated a priori.


Sign in / Sign up

Export Citation Format

Share Document