Coupling of Rigorous Multiphase Flash with Advanced Linearization Schemes for Accurate Compositional Simulation

2021 ◽  
Author(s):  
Abdul Salam Abd ◽  
Ahmad Abushaikha ◽  
Denis Voskov

Abstract The properties of fluids flowing in a petroleum reservoir are quantified by understanding the thermodynamic behavior of each flowing phase in the system. This work describes proper techniques to formulate and execute a thermodynamic model for accurately predicting the equilibrium behavior of oil-gas-brine systems within the practical range of pressure and temperature. The three-phase flash algorithm is validated against published data from the available literature. The multiphase flash procedure is implemented to generate linearized physical properties by using an Operator Based Linearization (OBL) modelling technique allowing for a combination of multiple complex physics in the nonlinear solution of governing equations. This is the first implementation of three-phase flash calculations for hydrocarbons and brines based on fugacity-activity models coupled with an advanced highly efficient linearization scheme. Our approach increases the efficiency and flexibility of the modelling process of physical phenomena such as fluid flow in porous subsurface reservoirs.

Author(s):  
Lifeng Zhang

The tomographic imaging of process parameters for oil-gas-water three-phase flow can be obtained through different sensing modalities, such as electrical resistance tomography (ERT) and electrical capacitance tomography (ECT), both of which are sensitive to specific properties of the objects to be imaged. However, it is hard to discriminate oil, gas and water phases merely from reconstructed images of ERT or ECT. In this paper, the feasibility of image fusion based on ERT and ECT reconstructed images was investigated for oil-gas-water three-phase flow. Two cases were discussed and pixel-based image fusion method was presented. Simulation results showed that the cross-sectional reconstruction images of oil-gas-water three-phase flow can be obtained using the presented methods.


2007 ◽  
Author(s):  
Abbas Firoozabadi ◽  
Kjetil Braathen Haugen ◽  
Lixin Sun

2002 ◽  
Vol 124 (4) ◽  
pp. 628-633 ◽  
Author(s):  
H. Ahmadian ◽  
J. E. Mottershead ◽  
M. I. Friswell

The selection of parameters is most important to successful updating of finite element models. When the parameters are chosen on the basis of engineering understanding the model predictions are brought into agreement with experimental observations, and the behavior of the structure, even when differently configured, can be determined with confidence. Physical phenomena may be misrepresented in the original model, or may be absent altogether. In any case the updated model should represent an improved physical understanding of the structure and not simply consist of unrepresentative numbers which happen to cause the results of the model to agree with particular test data. The present paper introduces a systematic approach for the selection and physical realization of updated terms. In the realization process, the discrete equilibrium equation formed by mass, and stiffness matrices is converted to a continuous form at each node. By comparing the resulting differential equation with governing equations known to represent physical phenomena, the updated terms and their physical effects can be recognized. The approach is demonstrated by an experimental example.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
S.S.N. Gamage ◽  
R.M.T.S. Ratnayake ◽  
A.M.A.D.M. Senadhira ◽  
D.A. Weerasinghe ◽  
V.A. Waduge

Naturally-occurring radionuclides deposited beneath the earth, which are referred to as "NORM" and other toxicnon-radioactive elements transported to the earth surface with the oil and gas production. Hence, knowledge of the prevailing background levels of these elements in the subsurface reservoir formations is valuable to all stakeholders, most notably to regulatory authorities of the country. The drill cuttings obtained within depth range 3025m to 3095m of reservoir sand section in the deep water exploratory well (CLPL- Dorado 91 H/1z) drilled in the Mannar Basin offshore Sri Lanka were subjected to high-resolution Gamma-ray spectrometry and X-ray fluorescence (XRF) spectrometry.As test results revealed activity concentration of 40K varies from 0.338 Bq/g to 0.514 Bq/g, 210Pb from 0.007 Bq/g to 0.015 Bq/g, 226Ra from 0.012 Bq/g to 0.0145 Bq/g while 232Th levels are between 0.030 Bq/g to 0.040 Bq/g. According to the XRF testing levels of significantly hazardous non-radioactive elements are considerably lower, except for the level of the Barium. The Pb level varies between the 48 ppm to 22 ppm. The Thorium level varies between 9.6 ppm to 10.1 ppm. Manganese has a range of 5,173ppm to 653ppm.The barium levels are between 118,666 ppm to 24,400 ppm. NORM concentration of the tested section were on the lower side when results matched with the IAEA published data on NORM concentration in oil, gas and there byproducts and therefore there will be low level of NORM contaminations when the Dorado gas discovery proceeds to the production stage. Further there is no harmful public exposure from NORM by disposing these drill cuttings to environment or storing at any site location. But the disposal of the drilling mud and handling of the drilling mud should be conducted with cautious since extremely high Ba levels can potentially cause health problems.Keywords: NORM, drill-cuttings, oil, gas, Sri Lanka, XRF


2010 ◽  
Vol 132 (5) ◽  
Author(s):  
J. M. Osborne ◽  
R. D. O’Dea ◽  
J. P. Whiteley ◽  
H. M. Byrne ◽  
S. L. Waters

A three phase model for the growth of a tissue construct within a perfusion bioreactor is examined. The cell population (and attendant extracellular matrix), culture medium, and porous scaffold are treated as distinct phases. The bioreactor system is represented by a two-dimensional channel containing a cell-seeded rigid porous scaffold (tissue construct), which is perfused with a culture medium. Through the prescription of appropriate functional forms for cell proliferation and extracellular matrix deposition rates, the model is used to compare the influence of cell density-, pressure-, and culture medium shear stress-regulated growth on the composition of the engineered tissue. The governing equations are derived in O’Dea et al. “A Three Phase Model for Tissue Construct Growth in a Perfusion Bioreactor,” Math. Med. Biol., in which the long-wavelength limit was exploited to aid analysis; here, finite element methods are used to construct two-dimensional solutions to the governing equations and to investigate thoroughly their behavior. Comparison of the total tissue yield and averaged pressures, velocities, and shear stress demonstrates that quantitative agreement between the two-dimensional and long-wavelength approximation solutions is obtained for channel aspect ratios of order 10−2 and that much of the qualitative behavior of the model is captured in the long-wavelength limit, even for relatively large channel aspect ratios. However, we demonstrate that in order to capture accurately the effect of mechanotransduction mechanisms on tissue construct growth, spatial effects in at least two dimensions must be included due to the inherent spatial variation of mechanical stimuli relevant to perfusion bioreactors, most notably, fluid shear stress, a feature not captured in the long-wavelength limit.


Sign in / Sign up

Export Citation Format

Share Document