Modelling Methane Extraction from Stimulated Coalbed Influenced by Multidomain and Thermal Effects

2021 ◽  
Author(s):  
Wai Li ◽  
Jishan Liu ◽  
Jie Zeng ◽  
Yee-Kwong Leong ◽  
Derek Elsworth ◽  
...  

Abstract The process of extracting coalbed methane (CBM) is not only of significance for unconventional energy supply but also important in mine safety. The recent advance in fracking techniques, such as carbon dioxide (CO2) fracking, intensifies the complexity of stimulated coalbeds. This work focuses on developing a fully coupled multidomain model to describe and get insight into the process of CBM extraction, particularly from those compound-fractured coalbeds. A group of partial differential equations (PDEs) are derived to characterize gas transport from matrix to fractures and borehole. A stimulated coalbed is defined as an assembly of three interacting porous media: matrix, continuous fractures (CF) and radial primary hydraulic fracture (RF). Matrix and CF constitute a dual-porosity-dual-permeability system, while RF is simplified as an 1-D cracked medium. These media further form three distinct domains: non-stimulated reservoir domain (NSRD), stimulated reservoir domain (SRD) and RF. The effects of coal deformation, heat transfer, and non-thermal sorption are coupled into the model to reflect the multiple processes in CBM extraction. The finite element method is employed to numerically solve the PDEs. The proposed model is verified by comparing its simulation results to a set of well production data from Southern Qinshui Basin in Shanxi Province, China. Great consistency is observed, showing the satisfactory accuracy of the model for CBM extraction. After that, the difference between various stimulation patterns is presented by simulating the CBM extraction process with different stimulation patterns including (1) unstimulated coalbed; (2) double-wing fracture + NSRD; (3) multiple RFs + NSRD; (4) SRD + NSRD and (5) multiple RFs + SRD + NSRD. The results suggest that Pattern (5) (often formed by CO2 fracking) boosts the efficiency of CBM extraction because it generates a complex fracture network at various scales by both increasing the number of radial fractures and activating the micro-fractures in coal blocks. Sensitivity analysis is also performed to understand the influences of key factors on gas extraction from a stimulated coalbed with multiple domains. It is found that the distinct properties of different domains originate various evolutions, which in turn influences the CBM production. Ignoring thermal effects in CBM extraction will either overestimate or underestimate the production, which is the net effect of thermal strain and non-isothermal sorption. The proposed model provides a useful approach to accurately evaluate CBM extraction by taking the complex evolutions of coalbed properties and the interactions between different components and domains into account. The importance of multidomain and thermal effects for CBM reservoir simulation is also highlighted.

2021 ◽  
pp. 014459872098153
Author(s):  
Yanzhi Hu ◽  
Xiao Li ◽  
Zhaobin Zhang ◽  
Jianming He ◽  
Guanfang Li

Hydraulic fracturing is one of the most important technologies for shale gas production. Complex hydraulic fracture networks can be stimulated in shale reservoirs due to the existence of numerous natural fractures. The prediction of the complex fracture network remains a difficult and challenging problem. This paper presents a fully coupled hydromechanical model for complex hydraulic fracture network propagation based on the discontinuous deformation analysis (DDA) method. In the proposed model, the fracture propagation and rock mass deformation are simulated under the framework of DDA, and the fluid flow within fractures is simulated using lubrication theory. In particular, the natural fracture network is considered by using the discrete fracture network (DFN) model. The proposed model is widely verified against several analytical and experimental results. All the numerical results show good agreement. Then, this model is applied to field-scale modeling of hydraulic fracturing in naturally fractured shale reservoirs. The simulation results show that the proposed model can capture the evolution process of complex hydraulic fracture networks. This work offers a feasible numerical tool for investigating hydraulic fracturing processes, which may be useful for optimizing the fracturing design of shale gas reservoirs.


2013 ◽  
Vol 634-638 ◽  
pp. 3537-3540
Author(s):  
Xin Xian Zhai ◽  
Xiao Ju Li ◽  
Yan Wei Zhai

Duanwang Coal Mine is located at north of Qinshui coalfield in Shanxi province, China, which gently inclined and thick seams have been mined. Authorized production capacity of the coal mine is 1.8Mt/a. With the increase of mining depth, the mine gas emission quantity increased. Karst collapse columns are very developed in the minefield, and the phenomenon of abnormal gas emission always occurred at the coal face and driving gateway around the collapse columns, then the mine became high gassy one from low gassy mine. Using field measurement and theoretical analysis methods, the following conclusion can be drawn. Karst collapse columns have significant influences on gas emission of the coal face and driving gateway. Here are large amount of free form gas into and around the collapse columns, the collapse columns were disclosure while driving gateway, a large amount of the free gas into collapse column would be instantly released, which caused abnormal gas emission at driving gateway, even leading to gas density exceeding limitation by Coal Mine Safety Regulation of China. However, during mining area of the collapse columns, gas emission quantity at coal face was relatively smaller.


2020 ◽  
Vol 2020 ◽  
pp. 1-19
Author(s):  
Qiujia Hu ◽  
Xianmin Zhang ◽  
Xiang Wang ◽  
Bin Fan ◽  
Huimin Jia

Production optimization of coalbed methane (CBM) is a complex constrained nonlinear programming problem. Finding an optimal decision is challenging since the coal seams are generally heterogeneous with widespread cleats, fractures, and matrix pores, and the stress sensitivities are extremely strong; the production of CBM wells needs to be adjusted dynamically within a reasonable range to fit the complex physical dynamics of CBM reservoirs to maximize profits on a long-term horizon. To address these challenges, this paper focuses on the step-down production strategy, which reduces the bottom hole pressure (BHP) step by step to expand the pressure drop radius, mitigate the formation damage, and improve CBM recovery. The mathematical model of CBM well production schedule optimization problem is formulated. The objective of the optimization model is to maximize the cumulative gas production and the variables are chosen as BHP declines of every step. BHP and its decline rate constraints are also considered in the model. Since the optimization problem is high dimensional, nonlinear with many local minima and maxima, covariance matrix adaptation evolution strategy (CMA-ES), a stochastic, derivative-free intelligent algorithm, is selected. By integrating a reservoir simulator with CMA-ES, the optimization problem can be solved successfully. Experiments including both normal wells and real featured wells are studied. Results show that CMA-ES can converge to the optimal solution efficiently. With the increase of the number of variables, the converge rate decreases rapidly. CMA-ES needs 3 or even more times number of function evaluations to converge to 100% of the optimum value comparing to 99%. The optimized schedule can better fit the heterogeneity and complex dynamic changes of CBM reservoir, resulting a higher production rate peak and a higher stable period production rate. The cumulative production under the optimized schedule can increase by 20% or even more. Moreover, the effect of the control frequency on the production schedule optimization problem is investigated. With the increases of control frequency, the converge rate decreases rapidly and the production performance increases slightly, and the optimization algorithm has a higher risk of falling into local optima. The findings of this study can help to better understanding the relationship between control strategy and CBM well production performance and provide an effective tool to determine the optimal production schedule for CBM wells.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Cheng Wang ◽  
Zuqiang Xiong ◽  
Chun Wang ◽  
Yuli Wang ◽  
Yaohui Zhang

This research presents the grouting method of preventing rib sloughage which severely impacts mine safety and longwall retreat speed in thick coal seam with numerical simulation and laboratory tests. Based on the analysis of the plastic failure mode of five types of coal seam, roof strata ahead of the longwall face, and fractures developed in the coal seam, the following results are drawn, the range and degree of plastic failure generated in the coal seam and roof strata ahead of the longwall face gradually decreased as the coal mass strength increased; the grouting boreholes are essentially laid out within the coal rib instead of the roof. For a particular case of a coal mine in Shanxi province, a novel cement-based material was grouted, which fulfilled the reinforcement requirements under the tectonic stress regions and front abutment zones. Besides, the grouting borehole construction requested predrilled boreholes, full borehole intubation, lengthened hole sealing, and multiple-step drilling and grouting. This study can provide a theoretical framework of a design overview and practical basis for similar mining conditions in other coalfields.


2012 ◽  
Vol 170-173 ◽  
pp. 1187-1191
Author(s):  
Ya Hui Jia ◽  
Xiao Ping Xie ◽  
Ai Li Lu

Colabed methane system is a natural system that consists of coal seams, coalbed methane in them and surrounding rocks. As an unconventional natural gas, reservoir and conservation of coalbed methane are different from those of conventional hydrocarbon. The Qinshui Basin, covering an area about 30,000sq.km in southeastern Shanxi Province, has abundant coalbed methane resources in the carboniferous Taiyuan formation and permian Shanxi formation, with an in-situ methane resource 3.3×1012 m3.In this study, the structural deformation and tectonic evolution of coalbed methane system in Qinshui basin were reported. Relationships between structural deformation and the formation of coalbed methane reservoir in Qinshui Basin were also discussed. The results show that Yangquan-Shouyang area in the north part of the basin and Tunliu-Xiangyuan area in the east are favorable for formation coalbed methane system. In contrast, Jincheng-Qinshui area in the south part of basin and the Qinyuan area in the middle of basin are favorable for both the formation of coalbed methane reservoirs and high yields as well.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Ruizhong Jiang ◽  
Xiuwei Liu ◽  
Xing Wang ◽  
Qiong Wang ◽  
Yongzheng Cui ◽  
...  

Abstract Coalbed methane (CBM) which is clean energy has received great emphasis recently, and the multi-fracturing technology is widely applied in the exploitation of CBM. Due to the complexity, the randomness, and the anisotropism of the porous medium and the anomalous diffusion process, the fractal theory and fractional calculus are utilized to establish a semi-analytical fractal-fractional mathematical model considering the stress sensitivity of the cleat system for multi-fractured horizontal wells in CBM reservoirs. Through line-sink theory, Pedrosa transformation, perturbation theory, Laplace transformation, element discretization, superposition principle, and Stehfest numerical inversion, the pressure-transient analysis curves are plotted in the double logarithmic coordinates. By comparing with the existing model, the validation of the proposed model is illustrated. Also, nine flowing stages are identified according to different characteristics. Then, sensitivity analysis is conducted and influence laws are summarized. At last, a field application is introduced to furtherly verify the reliability of the proposed model. The relevant results analysis can provide some new significant guidance for interpreting the field data more precisely.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Guannan Liu ◽  
Dayu Ye ◽  
Feng Gao ◽  
Jishan Liu

In the process of coalbed methane exploitation, the fracture and pore structure is the key problem that affects the permeability of coalbed. At present, the coupling effect of fracture and pore structure and in situ stress is seldom considered in the study of coal seam permeability. In this paper, the fractal seepage model is coupled with coal deformation, and the adsorption expansion effect is considered. A multifield coupling model considering the influence of matrix and fracture structure is established. Then, the influence of pore structure parameters of main fracture on macropermeability is analyzed, including (1) fractal dimension of fracture length, (2) maximum fracture length, (3) fractal dimension of throat diameter, and (4) fractal dimension of throat bending. At the same time, the simulation results are compared with the results of Darcy’s uniform permeability model. The results show that the permeability calculated by the proposed model is significantly different from that calculated by the traditional cubic model. Under the action of in situ stress, when the porosity and other parameters remain unchanged, the macropermeability of coal is in direct proportion to the fractal dimension of coal fracture length, the fractal dimension of throat diameter, and the maximum fracture length and in inverse proportion to the fractal dimension of coal throat curvature.


Sign in / Sign up

Export Citation Format

Share Document