Novel Mineral Scale Deposition Model Under Different Flow Conditions with or Without Scale Inhibitors

2021 ◽  
Author(s):  
Zhaoyi Joey Dai ◽  
Amy Kan ◽  
Yi-Tsung Alex Lu ◽  
Cianna Leschied ◽  
Yue Zhao ◽  
...  

Abstract Mineral scale formation causes billions of dollars’ loss every year due to production losses and facility damages in the oil and gas industry. Accurate predictions of when, where, how much, and how fast scale will deposit in the production system and how much scale inhibitor is needed are critical for scale management. Unfortunately, there is not a sophisticated scale deposition model available, potentially due to the challenges below. First, an accurate thermodynamic model is not widely available to predict scale potential at extensive ranges of temperature, pressure, and brine compositions occurring in the oilfield. Second, due to the complex oilfield operation conditions with large variations of water, oil and gas flow rates, tubing size, surface roughness, etc., wide ranges of flow patterns and regimes can occur in the field and need to be covered in the deposition model. Third, how scale inhibitors impact the mineral deposition process is not fully understood. The objective of this study is to overcome these challenges and develop a model to predict mineral deposition at different flow conditions with or without scale inhibitors. Specifically, after decades of efforts, our group has developed one of the most accurate and widely used thermodynamic model, which was adopted in this new deposition model to predict scale potential up to 250 °C, 1,500 bars, and 6 mol/kg H2O ionic strength. In addition, the mass transfer coefficients were simulated from laminar (Re < 2300) to turbulent (Re > 3,100) flow regimes, as well as the transitional flow regimes (2300 < Re < 3,100) which occur occasionally in the oilfield using sophisticated flow dynamics models. More importantly, the new deposition model also incorporates the impacts of scale inhibitors on scale deposition which was tested and quantified with Langmuir-type kink site adsorption isotherm. The minimum inhibitor dosage required can be predicted at required protection time or maximum deposition thickness rate. This model also includes the impacts of entry-region flow regime in laminar flow, surface roughness, and laminar sublayer stability under turbulent flow. The new mineral scale deposition model was validated by our laminar tubing flow deposition experiments for barite and calcite with or without scale inhibitors and laminar-to-turbulent flow experiments in literature. The good match between experimental result and model predictions show the validity of our new model. This new mineral scale deposition model is the first sophisticated model available in the oil and gas industry that can predict mineral scale deposition in the complex oilfield conditions with and without scale inhibitors. This new mineral scale deposition model will be a useful and practical tool for oilfield scale control.

2014 ◽  
Author(s):  
N.. Ghorbani ◽  
M. C. Wilson ◽  
N.. Kapur ◽  
N.. Fleming ◽  
A.. Neville

Abstract A new potential application of nanotechnology for mineral scale prevention in the oil and gas industry is presented. In current squeeze treatments, in which scale inhibitors are squeezed into wells to adsorb or precipitate onto rock surfaces for later release, a large proportion of the injected inhibitor does not adsorb and is therefore returned very quickly from the reservoir upon well re-start. Here it is demonstrated that nano-particles have the potential to enhance squeeze lifetime by greatly increasing the adsorption of inhibitors within the formation. An extensive literature review is presented, exploring the potential for using nano-scale materials in squeeze treatments. One of the observations from scale inhibitor squeezes into sandstone reservoirs is the apparent lack of suitable surfaces available for adsorption. The main constituent of sandstones, quartz, has a very low ability to adsorb inhibitor (1 mg/l). Given this, research using nanotechnology was targeted towards enhancing the available sites for scale inhibitor adsorption within the near wellbore. Specifically, research was undertaken to examine the potential benefits of using carbon nanotubes in a process called Nanotechnology Assisted Squeeze Treatment (NAST). The process involves carbon nanotubes adsorbing and permanently modifying the near wellbore with scale inhibitors subsequently adsorbing onto the nanotubes. This process was observed to be significantly higher than a non-modified near wellbore surface, with a maximum adsorption of more than 85 and 160mg/g onto the nanotubes in solution of distilled water (DW) and CaCl2 in DW; respectively, compared to 1 mg/g directly onto the rock. Coreflood tests comparing the NAST procedure with a simplified standard coreflood show the potential for improvement of the squeeze lifetime.


2020 ◽  
Vol 78 (7) ◽  
pp. 861-868
Author(s):  
Casper Wassink ◽  
Marc Grenier ◽  
Oliver Roy ◽  
Neil Pearson

2004 ◽  
pp. 51-69 ◽  
Author(s):  
E. Sharipova ◽  
I. Tcherkashin

Federal tax revenues from the main sectors of the Russian economy after the 1998 crisis are examined in the article. Authors present the structure of revenues from these sectors by main taxes for 1999-2003 and prospects for 2004. Emphasis is given to an increasing dependence of budget on revenues from oil and gas industries. The share of proceeds from these sectors has reached 1/3 of total federal revenues. To explain this fact world oil prices dynamics and changes in tax legislation in Russia are considered. Empirical results show strong dependence of budget revenues on oil prices. The analysis of changes in tax legislation in oil and gas industry shows that the government has managed to redistribute resource rent in favor of the state.


2011 ◽  
pp. 19-33
Author(s):  
A. Oleinik

The article deals with the issues of political and economic power as well as their constellation on the market. The theory of public choice and the theory of public contract are confronted with an approach centered on the power triad. If structured in the power triad, interactions among states representatives, businesses with structural advantages and businesses without structural advantages allow capturing administrative rents. The political power of the ruling elites coexists with economic power of certain members of the business community. The situation in the oil and gas industry, the retail trade and the road construction and operation industry in Russia illustrates key moments in the proposed analysis.


2019 ◽  
Vol 16 (6) ◽  
pp. 50-59
Author(s):  
O. P. Trubitsina ◽  
V. N. Bashkin

The article is devoted to the consideration of geopolitical challenges for the analysis of geoenvironmental risks (GERs) in the hydrocarbon development of the Arctic territory. Geopolitical risks (GPRs), like GERs, can be transformed into opposite external environment factors of oil and gas industry facilities in the form of additional opportunities or threats, which the authors identify in detail for each type of risk. This is necessary for further development of methodological base of expert methods for GER management in the context of the implementational proposed two-stage model of the GER analysis taking to account GPR for the improvement of effectiveness making decisions to ensure optimal operation of the facility oil and gas industry and minimize the impact on the environment in the geopolitical conditions of the Arctic.The authors declare no conflict of interest


Sign in / Sign up

Export Citation Format

Share Document