Mechanistic Modeling of Wellbore Cleanout in Horizontal and Inclined Wells

2021 ◽  
Author(s):  
Rida Elgaddafi ◽  
Ramadan Ahmed ◽  
Hamidreza Karami ◽  
Mustafa Nasser ◽  
Ibnelwaleed Hussein

Abstract The accumulation of rock cuttings, proppant, and other solid debris in the wellbore due to inadequate cleanout remarkably impedes field operations. This article presents a new hole cleaning model, which calculates the Critical Transport Velocity (CTV) in conventional and fibrous fluids. The study is aimed to establish an accurate mechanistic model for optimizing wellbore cleanout in horizontal and inclined wells. The new CTV model is established to predict the initiation of bed particle movement during cleanout operations. The model is formulated considering the impact of fiber using a special drag coefficient (i.e. fiber drag coefficient), which represents the mechanical and hydrodynamic actions of suspended fiber particles and their network. The dominant forces acting on a single bed particle are considered to develop the model. Furthermore, to enhance the precision of the model, recently developed hydraulic correlations are employed to compute the average bed shear stress, which is required to determine the CTV. In horizontal and highly deviated wells, the wellbore geometry is often eccentric, resulting in the formation of flow stagnant zones that are difficult to clean. The bed shear stress in these zones is sensitive to the bed thickness. The existing wellbore cleanout models do not account for the variation in bed shear stress. Thus, their accuracy is limited when stagnant zones are formed. The new model addresses this problem by incorporating hydraulic correlations to account for bed shear stress variation with bed height. The accuracy of the new model is validated with published measurements and compared with the precision of an existing model. The use of fiber drag and bed shear stress correlations has improved model accuracy and aided in capturing the contribution of fiber in improving wellbore cleanout. As a result, for fibrous and conventional fluids, the predictions of the new model have demonstrated good agreement with experimental measurements and provided better predictions than the existing model. Model predictions show a noticeable reduction in fluid circulation rate due to the addition of a small quantity of fiber (0.04% w/w) in the fluid. In addition, results show that the existing model over predicts the cleaning performance of both conventional and fibrous fluids.

2021 ◽  
pp. 1-17
Author(s):  
Rida Elgaddafi ◽  
Ramadan Ahmed ◽  
Hamidreza Karami ◽  
Mustafa Nasser ◽  
Ibnelwaleed Hussein

Summary The accumulation of rock cuttings, proppant, and other solid debris in the wellbore caused by inadequate cleanout remarkably impedes field operations. The cuttings removal process becomes a more challenging task as the coiled-tubing techniques are used during drilling and fracturing operations. This article presents a new hole cleaning model, which calculates the critical transport velocity (CTV) in conventional and fibrous water-based fluids. The study is aimed to establish an accurate mechanistic model for optimizing wellbore cleanout in horizontal and inclined wells. The new CTV model is established to predict the initiation of bed particle movement during cleanout operations. The model is formulated considering the impact of fiber using a special drag coefficient (i.e., fiber drag coefficient), which represents the mechanical and hydrodynamic actions of suspended fiber particles and their network. The dominant forces acting on a single bed particle are considered to develop the model. Furthermore, to enhance the precision of the model, recently developed hydraulic correlations are used to compute the average bed shear stress, which is required to determine the CTV. In horizontal and highly deviated wells, the wellbore geometry is often eccentric, resulting in the formation of flow stagnant zones that are difficult to clean. The bed shear stress in these zones is sensitive to the bed thickness. The existing wellbore cleanout models do not account for the variation in bed shear stress. Thus, their accuracy is limited when stagnant zones are formed. The new model addresses this problem by incorporating hydraulic correlations to account for bed shear stress variation with bed height. The accuracy of the new model is validated with published measurements and compared with the precision of an existing model. The use of fiber drag and bed shear stress correlations has improved model accuracy and aided in capturing the contribution of fiber in improving wellbore cleanout. As a result, for fibrous and conventional water-based fluids, the predictions of the new model have demonstrated good agreement with experimental measurements and provided better predictions than the existing model. Model predictions show a noticeable reduction in fluid circulation rate caused by the addition of a small quantity of fiber (0.04% w/w) in the fluid. In addition, results show that the existing model overpredicts the cleaning performance of both conventional and fibrous water-basedmuds.


2021 ◽  
Vol 27 (2) ◽  
pp. 44-58
Author(s):  
Ahmed M. Hussein AL‏-‏Sarefi ◽  
Riyadh Z. Azzubaidi

This paper presents a numerical simulation of the flow around elliptic groynes by using CFD ‎software. The flow was simulated in a flume with 4m long, 0.4m wide, ‎and 0.175m ‎high ‎‎with a constant bed slope. Moreover, the first Groyne placed at 1m from the flow ‎‎inlet with a ‎constant the Groyne height of 10cm and a 1cm thickness, and the ‎width of Groynes equals ‎7cm‎. A submergence ratio of the elliptic Groynes of 75% was assumed, corresponding to a discharge of ‎0.0057‎m3/sec. The CFD ‎model showed a good ability to simulate the flow ‎around ‎Groynes with ‎ good accuracy. The results of ‎CFD software showed that when using double elliptic Groynes, the bed shear stress is decreased with the ‎increase in the spacing between Groynes, as well as and the best spacing between the double ‎elliptic Groynes is twice of the Groyne width. Moreover, the used number of Groynes has no ‎much ‎impact ‎on velocity and shear ‎stress values.


2021 ◽  
Vol 9 (9) ◽  
pp. 936
Author(s):  
Yeulwoo Kim ◽  
Ryan S. Mieras ◽  
Dylan Anderson ◽  
Timu Gallien

SedWaveFoam, an OpenFOAM-based two-phase model that concurrently resolves the free surface wave field, and the bottom boundary layer is used to investigate sediment transport throughout the entire water column. The numerical model was validated with large-scale wave flume data for sheet flow driven by shoaling skewed-asymmetric waves with two different grain sizes. Newly obtained model results were combined with previous nonbreaking and near-breaking wave cases to develop parameterization methods for time-dependent bed shear stress and sediment transport rate under various sediment sizes and wave conditions. Gonzalez-Rodriguez and Madsen (GRM07) and quasi-steady approaches were compared for intra-wave bed shear stress. The results show that in strongly asymmetric flows, considering the separated boundary layer development processes at each half wave-cycle (i.e., GRM07) is essential to accurately estimating bed shear stress and highlights the impact of phase-lag effects on sediment transport rates. The quasi-steady approach underpredicts (∼60%) sediment transport rates, especially for fine grains under large velocity asymmetry. A modified phase-lag parameter, incorporating velocity asymmetry, sediment stirring, and settling processes is proposed to extend the Meyer-Peter and Mueller type power law formula. The extended formula accurately estimated the enhanced net onshore sediment transport rate observed under skewed-asymmetric wave conditions.


1996 ◽  
Vol 33 (9) ◽  
pp. 163-170 ◽  
Author(s):  
Virginia R. Stovin ◽  
Adrian J. Saul

Research was undertaken in order to identify possible methodologies for the prediction of sedimentation in storage chambers based on computational fluid dynamics (CFD). The Fluent CFD software was used to establish a numerical model of the flow field, on which further analysis was undertaken. Sedimentation was estimated from the simulated flow fields by two different methods. The first approach used the simulation to predict the bed shear stress distribution, with deposition being assumed for areas where the bed shear stress fell below a critical value (τcd). The value of τcd had previously been determined in the laboratory. Efficiency was then calculated as a function of the proportion of the chamber bed for which deposition had been predicted. The second method used the particle tracking facility in Fluent and efficiency was calculated from the proportion of particles that remained within the chamber. The results from the two techniques for efficiency are compared to data collected in a laboratory chamber. Three further simulations were then undertaken in order to investigate the influence of length to breadth ratio on chamber performance. The methodology presented here could be applied to complex geometries and full scale installations.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 463
Author(s):  
Gopinathan R. Abhijith ◽  
Leonid Kadinski ◽  
Avi Ostfeld

The formation of bacterial regrowth and disinfection by-products is ubiquitous in chlorinated water distribution systems (WDSs) operated with organic loads. A generic, easy-to-use mechanistic model describing the fundamental processes governing the interrelationship between chlorine, total organic carbon (TOC), and bacteria to analyze the spatiotemporal water quality variations in WDSs was developed using EPANET-MSX. The representation of multispecies reactions was simplified to minimize the interdependent model parameters. The physicochemical/biological processes that cannot be experimentally determined were neglected. The effects of source water characteristics and water residence time on controlling bacterial regrowth and Trihalomethane (THM) formation in two well-tested systems under chlorinated and non-chlorinated conditions were analyzed by applying the model. The results established that a 100% increase in the free chlorine concentration and a 50% reduction in the TOC at the source effectuated a 5.87 log scale decrement in the bacteriological activity at the expense of a 60% increase in THM formation. The sensitivity study showed the impact of the operating conditions and the network characteristics in determining parameter sensitivities to model outputs. The maximum specific growth rate constant for bulk phase bacteria was found to be the most sensitive parameter to the predicted bacterial regrowth.


Computation ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 8
Author(s):  
Chendi Cao ◽  
Mitchell Neilsen

Dam embankment breaches caused by overtopping or internal erosion can impact both life and property downstream. It is important to accurately predict the amount of erosion, peak discharge, and the resulting downstream flow. This paper presents a new model based on the material point method to simulate soil and water interaction and predict failure rate parameters. The model assumes that the dam consists of a homogeneous embankment constructed with cohesive soil, and water inflow is defined by a hydrograph using other readily available reach routing software. The model uses continuum mixture theory to describe each phase where each species individually obeys the conservation of mass and momentum. A two-grid material point method is used to discretize the governing equations. The Drucker–Prager plastic flow model, combined with a Hencky strain-based hyperelasticity model, is used to compute soil stress. Water is modeled as a weakly compressible fluid. Analysis of the model demonstrates the efficacy of our approach for existing examples of overtopping dam breach, dam failures, and collisions. Simulation results from our model are compared with a physical-based breach model, WinDAM C. The new model can capture water and soil interaction at a finer granularity than WinDAM C. The new model gradually removes the granular material during the breach process. The impact of material properties on the dam breach process is also analyzed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wuyang Huang ◽  
Ky Young Cho ◽  
Di Meng ◽  
W. Allan Walker

AbstractAn excessive intestinal inflammatory response may have a role in the pathogenesis of necrotizing enterocolitis (NEC) in very preterm infants. Indole-3-lactic acid (ILA) of breastmilk tryptophan was identified as the anti-inflammatory metabolite involved in probiotic conditioned media from Bifidobacteria longum subsp infantis. This study aimed to explore the molecular endocytic pathways involved in the protective ILA effect against inflammation. H4 cells, Caco-2 cells, C57BL/6 pup and adult mice were used to compare the anti-inflammatory mechanisms between immature and mature enterocytes in vitro and in vivo. The results show that ILA has pleiotropic protective effects on immature enterocytes including anti-inflammatory, anti-viral, and developmental regulatory potentials in a region-dependent and an age-dependent manner. Quantitative transcriptomic analysis revealed a new mechanistic model in which STAT1 pathways play an important role in IL-1β-induced inflammation and ILA has a regulatory effect on STAT1 pathways. These studies were validated by real-time RT-qPCR and STAT1 inhibitor experiments. Different protective reactions of ILA between immature and mature enterocytes indicated that ILA’s effects are developmentally regulated. These findings may be helpful in preventing NEC for premature infants.


2021 ◽  
Vol 9 (3) ◽  
pp. 246
Author(s):  
Difu Sun ◽  
Junqiang Song ◽  
Xiaoyong Li ◽  
Kaijun Ren ◽  
Hongze Leng

A wave state related sea surface roughness parameterization scheme that takes into account the impact of sea foam is proposed in this study. Using eight observational datasets, the performances of two most widely used wave state related parameterizations are examined under various wave conditions. Based on the different performances of two wave state related parameterizations under different wave state, and by introducing the effect of sea foam, a new sea surface roughness parameterization suitable for low to extreme wind conditions is proposed. The behaviors of drag coefficient predicted by the proposed parameterization match the field and laboratory measurements well. It is shown that the drag coefficient increases with the increasing wind speed under low and moderate wind speed conditions, and then decreases with increasing wind speed, due to the effect of sea foam under high wind speed conditions. The maximum values of the drag coefficient are reached when the 10 m wind speeds are in the range of 30–35 m/s.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Umer Zahid

AbstractMost of the industrial acid gas removal (AGR) units employ chemical absorption process for the removal of acid gases from the natural gas. In this study, two gas processing plants operational in Saudi Arabia have been selected where two different amines n1amely, diglycolamine (DGA) and monoethanol amine (MDEA) are used to achieve the sweet gas purity with less than 4 ppm of H2S. This study performed a feasibility simulation of AGR unit by utilizing the amine blend (DGA+MDEA) for both plants instead of a single amine. The study used a commercial process simulator to analyze the impact of process variables such as amine circulation rate, amine strength, lean amine temperature, regenerator inlet temperature, and absorber and regenerator pressure on the process performance. The results reveal that when the MDEA (0–15 wt. %) is added to DGA, marginal energy savings can be achieved. However, significant operational energy savings can be made when the DGA (0–15 wt. %) is blended with MDEA being the main amine.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
E M J Hartman ◽  
A M Kok ◽  
A Hoogendoorn ◽  
F J H Gijsen ◽  
A F W Steen ◽  
...  

Abstract Introduction Local wall shear stress (WSS) metrics, high local lipid levels (as detected by near-infrared spectroscopy (NIRS)), as well as systemic lipid levels, have been individually associated with atherosclerotic disease progression. However, a possible synergistic effect remains to be elucidated. This study is the first study to combine WSS metrics with NIRS-detected local lipid content to investigate a potential synergistic effect on plaque progression in human coronary arteries. Methods The IMPACT study is a prospective, single centre study investigating the relation between atherosclerotic plaque progression and WSS in human coronary arteries. Patients with ACS treated with PCI were included. At baseline and after 1-year follow-up, patients underwent near-infrared spectroscopy intravascular ultrasound (NIRS-IVUS) imaging and intravascular doppler flow measurements of at least one non-culprit coronary artery. After one month, a CT angiography was made. CT derived centreline combined with IVUS lumen contours resulted in a 3D reconstruction of the vessel. The following WSS metrics were computed using computational fluid dynamics applying the vessel specific invasive flow measurements: time-average wall shear stress (TAWSS), relative residence time (RRT), cross-flow index, oscillatory shear index and transverse wall shear stress. Low TAWSS is known as pro atherogenic, in contrast to all the other shear stress metrics, at which a high magnitude is pro-atherogenic. The arteries were divided into 1.5mm/45° sectors. Based on NIRS-IVUS, wall thickness change over time was determined and NIRS positive sectors detected. Furthermore, per vessel the shear stress was divided into tertiles (low, intermediate, high). To investigate the synergistic effect of local lipids on shear stress related plaque growth, wall thickness change over time was related to the different shear stress metrics comparing the NIRS-positive with the NIRS-negative sectors. Results 15 non-culprit coronary arteries from the first 14 patients were analyzed (age 62±10 years old and 92.9% male). A total of 2219 sectors were studied (5.2%, N=130, NIRS-positive) for wall thickness changes. After studying all five shear stress metrics, we found for TAWSS and RRT that presence of lipids, as detected by NIRS, amplified the effect of shear stress on plaque progression (see figure). Sectors presenting with lipid-rich plaque, compared to NIRS-negative sectors, showed more progression when they were exposed to low TAWSS (p=0.07) or high RRT (p=0.012) and more regression in sectors exposed to high TAWSS (p=0.10) or low RRT (p=0.06). Delta wall thickness vs shear stress Conclusion We presented the first preliminary results of the IMPACT study, showing the synergistic effect of lipid rich plaque and shear stress on plaque progression. Therefore, intravascular lipid-rich plaque (NIRS) assessment has added value to shear stress profiling for the prediction of plaque growth, leading to improved risk stratification. Acknowledgement/Funding ERC starting grant 310457


Sign in / Sign up

Export Citation Format

Share Document