Outside the Box: Innovative Application of Diversion as a Replacement for Bridge Plug

2021 ◽  
Author(s):  
Hong Chang ◽  
De Qiang Yi ◽  
Yang Lv ◽  
Ming Zhao ◽  
Peng Liang Cao ◽  
...  

Abstract Effective stage-to-stage isolation is typically accomplished by setting a bridge plug in a properly cemented casing between stages. This isolation plays a vital role in a horizontal well multistage fracturing completion. Failure of isolation not only impacts the well productivity but also wastes fracturing materials. The challenges isolation failure poses for stimulation effectiveness include both detection and remediation. First, there has been historically no reliable and cost-effective solution to detect stage-to-stage isolation onsite. One may only start to realize this problem when inconsistent production is observed. Second, existing remedial actions are seldom satisfying in case of an isolation failure. Most commonly, a new plug is set to replace the failed one. However, because the perforation clusters of an unstimulated stage may create irregularities in well inside diameter (ID) (e.g., casing deformation or burr), there is a risk that the plug will be damaged or become stuck when it passes the perforation area. Also, when the plug passes a perforation cluster, the perforations start to take in the pump-down fluid, which can increase the difficulty of the pump-down job. A novel remedial action uses high-frequency pressure monitoring (HFPM) and diversion to solve both challenges. The stage isolation integrity is evaluated in quasi-real time by analyzing the water hammer after the pump shutdown. In the case of a plug failure, large-particle fracture diversion materials and techniques can establish temporary wellbore isolation through a quick and simple delivery process. To close the cycle, the effect of the diversion can be evaluated by HFPM, which can reveal the fluid entry point of the treatment fluid after diversion. The technique was applied to two cases in Ordos basin in which wellbore isolation failure interrupted the operation. The problem identification, development of the solution workflow, and observation from treatment analysis are discussed. In both cases, the stage-to-stage isolation was recovered, and the drilled sand body was successfully stimulated without involving costly and time-consuming well intervention. The stimulation operation of the entire well was successfully resumed in a timely manner.

2017 ◽  
Vol 867 ◽  
pp. 290-293 ◽  
Author(s):  
Kandasamy Jayakrishna ◽  
P. Sanjay Guar ◽  
R. Senthilkumar ◽  
Nagarajan Aathis

Development of prototypes draws major focus in contemporary manufacturing organisations. Sustainability analysis and comparison of the prototype manufacturing process plays a vital role in deciding the sustainability level of the product. Sustainability of prototyping depends on model building material and model building process. In this paper based on the customer requirements, Environmental Conscious Quality Function Deployment (ECQFD) was carried out. Increased lives, strength, reduced toxicity of material with biodegradability were the major outputs of ECQFD. Cambridge Engineering Selector (CES) and Grey Relation Analysis (GRA) were used for material selection. Wood, ABS, Poly Lactic acid (PLA) and Lead were selected as cost efficient materials for the case product. A CAD model of the case product was developed and subjected to Life Cycle Analysis (LCA) using solid works sustainability express for the above materials. Prototypes of the case products where produced by wood carving, casting, CNC Milling and 3D printing by considering all input parameters required across each process. LCA was conducted using GaBi for the above process and the results were compared. From this study, it was observed that the case product developed using PLA with 3D printing technology had very less impact on environment and is considered as the best and cost effective prototyping method.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2592 ◽  
Author(s):  
Funeka Matebese ◽  
Raymond Taziwa ◽  
Dorcas Mutukwa

P-type wide bandgap semiconductor materials such as CuI, NiO, Cu2O and CuSCN are currently undergoing intense research as viable alternative hole transport materials (HTMs) to the spiro-OMeTAD in perovskite solar cells (PSCs). Despite 23.3% efficiency of PSCs, there are still a number of issues in addition to the toxicology of Pb such as instability and high-cost of the current HTM that needs to be urgently addressed. To that end, copper thiocyanate (CuSCN) HTMs in addition to robustness have high stability, high hole mobility, and suitable energy levels as compared to spiro-OMeTAD HTM. CuSCN HTM layer use affordable materials, require short synthesis routes, require simple synthetic techniques such as spin-coating and doctor-blading, thus offer a viable way of developing cost-effective PSCs. HTMs play a vital role in PSCs as they can enhance the performance of a device by reducing charge recombination processes. In this review paper, we report on the current progress of CuSCN HTMs that have been reported to date in PSCs. CuSCN HTMs have shown enhanced stability when exposed to weather elements as the solar devices retained their initial efficiency by a greater percentage. The efficiency reported to date is greater than 20% and has a potential of increasing, as well as maintaining thermal stability.


2021 ◽  
Vol 43 ◽  
pp. e58283
Author(s):  
Clístenes Williams Araújo do Nascimento ◽  
Caroline Miranda Biondi ◽  
Fernando Bruno Vieira da Silva ◽  
Luiz Henrique Vieira Lima

Soil contamination by metals threatens both the environment and human health and hence requires remedial actions. The conventional approach of removing polluted soils and replacing them with clean soils (excavation) is very costly for low-value sites and not feasible on a large scale. In this scenario, phytoremediation emerged as a promising cost-effective and environmentally-friendly technology to render metals less bioavailable (phytostabilization) or clean up metal-polluted soils (phytoextraction). Phytostabilization has demonstrable successes in mining sites and brownfields. On the other hand, phytoextraction still has few examples of successful applications. Either by using hyperaccumulating plants or high biomass plants induced to accumulate metals through chelator addition to the soil, major phytoextraction bottlenecks remain, mainly the extended time frame to remediation and lack of revenue from the land during the process. Due to these drawbacks, phytomanagement has been proposed to provide economic, environmental, and social benefits until the contaminated site returns to productive usage. Here, we review the evolution, promises, and limitations of these phytotechnologies. Despite the lack of commercial phytoextraction operations, there have been significant advances in understanding phytotechnologies' main constraints. Further investigation on new plant species, especially in the tropics, and soil amendments can potentially provide the basis to transform phytoextraction into an operational metal clean-up technology in the future. However, at the current state of the art, phytotechnology is moving the focus from remediation technologies to pollution attenuation and palliative cares.


Author(s):  
Georgia Dede ◽  
George Hatzithanasis ◽  
Thomas Kamalakis ◽  
Christos Michalakelis

Cloud computing is a rapidly evolving computational model, which has succeeded in transforming the ICT industry and the economy's production techniques by making corresponding services even more accessible to businesses, offering cost-effective solutions. The cloud broker is a new business model, derived from the necessity of finding the best provider, or the best bundle for the end user. It is a third-party business that assists clients in making the best decision in choosing the most suitable cloud provider and the most effective service bundle for their needs, in terms of performance and price. This chapter analyzes the cloud broker business model and highlights the broker's vital role and the benefits that arise from the use of its services. In that context, it describes cloud brokering and a market analysis, together with the most popular pricing models, together with a comparison among them, concluding with future directions for the expansion of the brokerage model.


2019 ◽  
Vol 23 (2) ◽  
pp. 119-126 ◽  
Author(s):  
Qingshao Liang ◽  
Jingchun Tian ◽  
Feng Wang ◽  
Xiang Zhang

Soft-sediment deformation (SSD) structures of the Upper Triassic Yanchang Formation are laterally widespread in the Ordos Basin. In the Huachi-Qingyang (H-Q) area of the Ordos Basin, the Chang6 oil member of the Upper Triassic Yanchang Formation is among the most significant Mesozoic oil-bearing strata. It is characterized by the development of reservoir sand bodies. During the depositional evolution of the Chang6 oil member, SSD structures induced by paleo-seismic events developed in the H-Q area in the middle of the basin. The SSD structures developed in the sand bodies of the Chang6 oil member are mainly ball-and-pillow structures, fold structures, sand dikes, irregular convolute stratifications and synsedimentary faults. The architecture of the sand bodies resulted from paleo-seismic events and gravity slumping and mainly include two types of structures: 1) SSD structures driven by paleo-seismic events with normal sedimentation (delta front sand body) (SN-SSD) and 2) SSD structures driven by paleo-seismic events with turbidites (formed by delta-front slumping and re-distribution due to seismic action) (ST-SSD). As a consequence, genetic models of the sand bodies formed by different sedimentation processes are established.


2010 ◽  
Vol 50 (1) ◽  
pp. 593
Author(s):  
Silvio Stojic ◽  
Antoine Hanekom ◽  
Russell Colman

Leaks of hydrocarbon to the atmosphere can be a major facility safety risk and personnel occupational health and safety (OHS) risk for oil and gas producing and processing facilities. Normally closed valves that pass or leak in-line are also a major contributor to product loss and facility risk. Component failures of these types have two common and challenging features: they are hard to find among the tens of thousands of potential leak sources, and the leakage rates either to the atmosphere or in-line can vary from minor to potentially catastrophic. In the past seven to eight years, advanced methods for finding and managing leaks resulting from poor component integrity have been developed. This paper covers some of ATMECO’s accumulated knowledge developed over many leak surveys of both onshore and offshore oil and gas facilities. Typical statistical profiles of leaks from uncontrolled facilities are presented. The types of component failure that lead to leaks are discussed along with probabilistic analyses relating to the next likely failure. Technologies of leak detection are reviewed, highlighting benefits and problems. Also discussed are the prerequisite data capture and management systems needed for a competent, robust and auditable system to manage component integrity. Gas imaging technology is becoming one of the core hydrocarbon leak detection tools and also assists greatly in the analyses of leaks and in providing valuable input to remedial actions. Survey design requirements for continuing and cost-effective component leak risk management are reviewed. Recommendations are provided about the preferred methods and management structures for programs designed to minimise component integrity risks.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3267 ◽  
Author(s):  
Sahoo ◽  
Crisponi

Iron(III) is well-known to play a vital role in a variety of metabolic processes in almost all living systems, including the human body. However, the excess or deficiency of Fe3+ from the normal permissible limit can cause serious health problems. Therefore, novel analytical methods are developed for the simple, direct, and cost-effective monitoring of Fe3+ concentration in various environmental and biological samples. Because of the high selectivity and sensitivity, fast response time, and simplicity, the fluorescent-based molecular probes have been developed extensively in the past few decades to detect Fe3+. This review was narrated to summarize the Fe3+-selective fluorescent probes that show fluorescence enhancement (turn-on) and ratiometric response. The Fe3+ sensing ability, mechanisms along with the analytical novelties of recently reported 77 fluorescent probes are discussed.


2016 ◽  
Vol 37 (3) ◽  
pp. 39-61 ◽  
Author(s):  
Mark J. Gierl ◽  
Hollis Lai

Testing agencies require large numbers of high-quality items that are produced in a cost-effective and timely manner. Increasingly, these agencies also require items in different languages. In this paper we present a methodology for multilingual automatic item generation (AIG). AIG is the process of using item models to generate test items with the aid of computer technology. We describe a three-step AIG approach where, first, test development specialists identify the content that will be used for item generation. Next, the specialists create item models to specify the content in the assessment task that must be manipulated to produce new items. Finally, elements in the item model are manipulated with computer algorithms to produce new items. Language is added in the item model step to permit multilingual AIG. We illustrate our method by generating 360 English and 360 French medical education items. The importance of item banking in multilingual test development is also discussed.


Sign in / Sign up

Export Citation Format

Share Document