Production Performance Analysis of Western Siberia Mature Waterflood with Prime Diagnostic Metrics

2021 ◽  
Author(s):  
Arthur Aslanyan ◽  
Andrey Margarit ◽  
Arkadiy Popov ◽  
Ivan Zhdanov ◽  
Evgeniy Pakhomov ◽  
...  

Abstract The paper shares a practical case of production analysis of mature field in Western Siberia with a large stock of wells (> 1,000) and ongoing waterflood project. The main production complications of this field are the thief water production, thief water injection and non-uniform vertical sweep profile. The objective of the study was to analyse the 30-year history of development using conventional production and surveillance data, identify the suspects of thief water production and thief water injection and check the uniformity of the vertical flow profile. Performing such an analysis on well-by-well basis is a big challenge and requires a systematic approach and substantial automation. The majority of conventional diagnostic metrics fail to identify the origin of production complications. The choice was made in favour of production analysis workflow based on PRIME metrics, which automatically generates numerous conventional production performance metrics (including the reallocated production maps and cross-sections) and additionally generates advanced metrics based on automated 3D micro-modelling. This allowed to zoom on the wells with potential complications and understand their production/recovery potential. The PRIME analysis has also helped to identify the wells and areas which potentially may hold recoverable reserves and may benefit from additional well and cross-well surveillance.

2021 ◽  
Author(s):  
Abdulaziz Al-Qasim ◽  
Sharidah Alabduh ◽  
Muhannad Alabdullateef ◽  
Mutaz Alsubhi

Abstract Fiber-optic sensing (FOS) technology is gradually becoming a pervasive tool in the monitoring and surveillance toolkit for reservoir engineers. Traditionally, sensing with fiber optic technology in the form of distributed temperature sensing (DTS) or distributed acoustic sensing (DAS), and most recently distributed strain sensing (DSS), distributed flow sensing (DFS) and distributed pressure sensing (DPS) were done with the fiber being permanently clamped either behind the casing or production tubing. Distributed chemical sensing (DCS) is still in the development phase. The emergence of the composite carbon-rod (CCR) system that can be easily deployed in and out of a well, similar to wireline logging, has opened up a vista of possibilities to obtain many FOS measurements in any well without prior fiber-optic installation. Currently, combinations of distributed FOS data are being used for injection management, well integrity monitoring, well stimulation and production performance optimization, thermal recovery management, etc. Is it possible to integrate many of the distributed FOS measurements in the CCR or a hybrid combination with wireline to obtain multiple measurements with one FOS cable? Each one of FOS has its own use to get certain data, or combination of FOS can be used to make a further interpretation. This paper reviews the state of the art of the FOS technology and the gamut of current different applications of FOS data in the oil and gas (upstream) industry. We present some results of traditional FOS measurements for well integrity monitoring, assessing production and injection flow profile, cross flow behind casing, etc. We propose some nontraditional applications of the technology and suggest a few ways through. Which the technology can be deployed for obtaining some key reservoir description and dynamics data for reservoir performance optimization.


2021 ◽  
Author(s):  
Pawan Agrawal ◽  
Sharifa Yousif ◽  
Ahmed Shokry ◽  
Talha Saqib ◽  
Osama Keshtta ◽  
...  

Abstract In a giant offshore UAE carbonate oil field, challenges related to advanced maturity, presence of a huge gas-cap and reservoir heterogeneities have impacted production performance. More than 30% of oil producers are closed due to gas front advance and this percentage is increasing with time. The viability of future developments is highly impacted by lower completion design and ways to limit gas breakthrough. Autonomous inflow-control devices (AICD's) are seen as a viable lower completion method to mitigate gas production while allowing oil production, but their effect on pressure drawdown must be carefully accounted for, in a context of particularly high export pressure. A first AICD completion was tested in 2020, after a careful selection amongst high-GOR wells and a diagnosis of underlying gas production mechanisms. The selected pilot is an open-hole horizontal drain closed due to high GOR. Its production profile was investigated through a baseline production log. Several AICD designs were simulated using a nodal analysis model to account for the export pressure. Reservoir simulation was used to evaluate the long-term performance of short-listed scenarios. The integrated process involved all disciplines, from geology, reservoir engineering, petrophysics, to petroleum and completion engineering. In the finally selected design, only the high-permeability heel part of the horizontal drain was covered by AICDs, whereas the rest was completed with pre-perforated liner intervals, separated with swell packers. It was considered that a balance between gas isolation and pressure draw-down reduction had to be found to ensure production viability for such pilot evaluation. Subsequent to the re-completion, the well could be produced at low GOR, and a second production log confirmed the effectiveness of AICDs in isolating free gas production, while enhancing healthy oil production from the deeper part of the drain. Continuous production monitoring, and other flow profile surveys, will complete the evaluation of AICD effectiveness and its adaptability to evolving pressure and fluid distribution within the reservoir. Several lessons will be learnt from this first AICD pilot, particularly related to the criticality of fully integrated subsurface understanding, evaluation, and completion design studies. The use of AICD technology appears promising for retrofit solutions in high-GOR inactive strings, prolonging well life and increasing reserves. Regarding newly drilled wells, dedicated efforts are underway to associate this technology with enhanced reservoir evaluation methods, allowing to directly design the lower completion based on diagnosed reservoir heterogeneities. Reduced export pressure and artificial lift will feature in future field development phases, and offer the flexibility to extend the use of AICD's. The current technology evaluation phases are however crucial in the definition of such technology deployments and the confirmation of their long-term viability.


2021 ◽  
pp. 1-23
Author(s):  
Daniel O'Reilly ◽  
Manouchehr Haghighi ◽  
Mohammad Sayyafzadeh ◽  
Matthew Flett

Summary An approach to the analysis of production data from waterflooded oil fields is proposed in this paper. The method builds on the established techniques of rate-transient analysis (RTA) and extends the analysis period to include the transient- and steady-state effects caused by a water-injection well. This includes the initial rate transient during primary production, the depletion period of boundary-dominated flow (BDF), a transient period after injection starts and diffuses across the reservoir, and the steady-state production that follows. RTA will be applied to immiscible displacement using a graph that can be used to ascertain reservoir properties and evaluate performance aspects of the waterflood. The developed solutions can also be used for accurate and rapid forecasting of all production transience and boundary-dominated behavior at all stages of field life. Rigorous solutions are derived for the transient unit mobility displacement of a reservoir fluid, and for both constant-rate-injection and constant-pressure-injection after a period of reservoir depletion. A simple treatment of two-phase flow is given to extend this to the water/oil-displacement problem. The solutions are analytical and are validated using reservoir simulation and applied to field cases. Individual wells or total fields can be studied with this technique; several examples of both will be given. Practical cases are given for use of the new theory. The equations can be applied to production-data interpretation, production forecasting, injection-water allocation, and for the diagnosis of waterflood-performanceproblems. Correction Note: The y-axis of Fig. 8d was corrected to "Dimensionless Decline Rate Integral, qDdi". No other content was changed.


2013 ◽  
Vol 734-737 ◽  
pp. 1488-1492
Author(s):  
Zhen Yu Liu ◽  
Li Hong Yao ◽  
Hu Zhen Wang ◽  
Cui Cui Ye

The fractures after artificial steering fracturing appear in shades of curved surface. Aiming at the problem of steering fracture, in the paper, numerical simulation method under the condition of three-dimensional two-phase flow is presented based on finite element method. In this method, of steering fracture was achieved by adopting surface elements fractures and tetrahedron elements to describe formation. By numerical simulation, the change rule of oil and water production performance of steering fractures can be calculated, and then the steering fracture parameters can be optimized before fracturing. A new method was supplied for the numerical simulation of artificial fractured well.


2019 ◽  
Vol 141 (11) ◽  
Author(s):  
Shun Liu ◽  
Liming Zhang ◽  
Kai Zhang ◽  
Jianren Zhou ◽  
Heng He ◽  
...  

Presently, predicting the production performance of fractured reservoirs is often challenging because of the following two factors: one factor such as complicatedly connected and random distribution nature of the fractures and the other factor includes the limitations of the understanding of reservoir geology, deficient fracture-related research, and defective simulators. To overcome the difficulties of simulating and predicting fractured reservoir under complex circumstances of cross flow, a simplified model, which assumes cross flow only exists in the oil phase segment, is constructed. In the model, the pressure distribution of a single fracture can be described by solving an analytical mathematical model. In addition, due to research and field experience which indicate that cross flow also exists in the mixed-phase segment after water injection, the simplified model is modified to consider cross flow in the whole phase. The model constructed here is applicable for fractured reservoirs especially for a low-permeability fracture reservoir, and it moderately predicts future production index. By using iterative methods, the solution to the model can be feasibly obtained and related production performance index formulas can be derived explicitly. A case study was performed to test the model, and the results prove that it is good.


Author(s):  
Jonathan C. Corbett ◽  
Navid Goudarzi ◽  
Mohammadamin Sheikhshahrokhdehkordi

Abstract This research explores utilizing distributed wind turbines in the built environment computationally. The targeted wind turbine design is an unconventional ducted turbine, called Wind Tower technology that its operation and performance metrics have been studied in earlier works in the team. Wind Tower is an established architectural technology that operates by catching wind and directing it into buildings, providing natural ventilation to support HVAC systems, and thus reducing cooling costs in urban environments. Wind power has long struggled to meet expectations in built (urban) environments. By combining wind towers at different cross sections with wind turbines, one might develop a device which provides natural ventilation and produces power in spite of a hostile wind environment. The preliminary results suggest that the maximum potential for a wind tower-turbine combination appears to be 700-1.46 kW under idealized conditions with a 4 m/s site dominant wind speed. This suggests that wind towers might be viable for power harvesting in both remote and grid connected regions. Further analysis suggested that additional turbine performance enhancements are needed to bring the turbine real power production closer to that ideal.


2012 ◽  
Vol 616-618 ◽  
pp. 870-876
Author(s):  
Zong Yu Li ◽  
Ai Zhang ◽  
Shi Sheng Xu ◽  
Yun Feng He

This paper takes Yakela-dalaoba edge water and the Luntai basal water condensate gas reservoir for example, analyzes the condensate gas reservoir of edge-water or basal-water production characteristics, water production law in development process, and summarizes the three kinds of type water production of condensate gas reservoir, and put forward water control countermeasures specific to different water production type. Set up four edge-water or basal-water breakthrough models of gas condensate wells and the corresponding control measures, and being applied to the water control of Ya-Da gas condensate wells water gradually and the control effect is remarkable. Through the research of water production law and control countermeasures in Ya-Da condensate gas reservoir, provide significant development guidance for the other condensate gas reservoir which contains water.


2021 ◽  
Vol 2 (1) ◽  
pp. 7
Author(s):  
Agus Amperianto ◽  
Dyah Rini Ratnaningsih ◽  
Dedy Kristanto

AA field is a unitized asset operated by Corporate Oil Company since May 2018. The main producing formation of AA field is a reef build-up carbonate reservoir. The field has been on production since 2004 with OOIP of 297 MMSTB. As of November 2019 the cumulative production was estimated 120.7 MMSTB with RF of 41%. The carbonate reservoir has properties with relatively high heterogeneity –both vertically as well as laterally – which leads to production variation of the wells. The production performance shows an estimated 30% decline and significantly increasing water-cut. The production data shows a much faster water production compared with the cumulative production, which is also the greatest challenge in the AA field.There are several key contributing factors for the water production in AA field:Water channeling behind casing due to poor cement bond. This is supported by Chan Plot analysis.Uneven production of the wells leading to varying water rise and introduces difficulty in water contact determination.Water coning due to production exceeding the critical rate.Several efforts have been performed to optimize production, namely: identification of the potential of remaining hydrocarbon (bypassed oil) in the wells by evaluating current saturation evaluation through downhole surveillance, estimation of current water contact and cement bond improvement.The preparation steps of the production optimization process are summarized below:Screening of Candidate WellsEvaluation of Cement Bond QualityWellsite Execution for Bypassed Oil EvaluationWell PreparationOptimum C/O Log to Evaluate Current Saturation and to Identify Bypassed Oil ZonesBypassed Oil Interval ProductionThis section discusses one of successful cases in the production optimization effort implemented in the AA- field.AA-12 wellThe last production of AA-12 well was 84 BOPD. Chan plot showed possibility of water channeling, which was supported by CBL result. The zone of existing perforation interval was indicated to have “free pipe” behind the casing. Remedial cementing was then performed until sufficient zonal isolation was obtained. After subsequent CBL confirmed good zonal isolation, C/O log was then performed. The C/O log result indicated several reservoir zones with potential bypassed oil. The new production interval was selected based on following consideration: So between 55-60%, height above current OWC of 185 ft (56 m), distance to the adjacent wells of 1306 ft (398 m), porosity 12-17% and Production test of the new perforation resulted in 2186 BOPD with 0% water-cut.


2020 ◽  
Vol 142 (3) ◽  
Author(s):  
Honglie Ye ◽  
Yanjie Zheng ◽  
Hongfei Zheng ◽  
Shen Liang

Abstract In this paper, a new design of a solar still powered by a compound parabolic concentrator (CPC-SS) for agriculture irrigation is proposed and investigated. The concentrating performance of its concentrator is simulated which is proved that it has a wide focusing angle and the receiving rate is still more than 80% when the incident angle of light reaches to 35 deg. Theoretical calculations show that the daily water production rate per unit area of the solar still can reach 4 kg/m2, which can meet the crop growth needs of 2 m2. The water production performance and operating temperature of the CPC-SS were tested experimentally under actual weather conditions, and the variation curves of system internal working temperature and water production performance with time were given. As the results, in the sunny weather conditions in Beijing in the autumn, the daily water production of the tubular solar still is about 2.03 kg/m2, and the maximum operating temperature in the tube reaches 60 °C. The actual solar energy utilization efficiency can be as high as 22%.


Sign in / Sign up

Export Citation Format

Share Document