Interwell Saturation Prediction by Artificial Intelligence Analysis of Well Logs

2021 ◽  
Author(s):  
Dmitry Kovalev ◽  
Sergey Safonov ◽  
Klemens Katterbauer ◽  
Alberto Marsala

Abstract Well log analysis, through deploying advanced artificial intelligence (AI) algorithms, is key for wellbore geological studies. By analyzing different well characteristics with modern AI tools it becomes possible to estimate interwell saturation with improved accuracy, outlining primary fluid channels and saturation propagations in the reservoirs interwell region. The development of modern deep learning and artificial intelligence methods allows analysts to predict interwell saturation as a function of observed data in the near wellbore logged geological layers. This work addresses the use of deep neural network architectures as well as tensor regression models for predicting interwell saturation from other well characteristics, such as resistivity and porosity, as well as local near-well saturation. Several algorithms are compared in terms of both accuracy and computational efficiency. Sensitivity analysis for model parameters is carried out, which is based on the wells’ geometry, radius, and multiple sampling techniques. Additionally, the impact of local saturation prior knowledge on the model accuracy is analyzed. A reservoir box model encompassing volumetric interwell porosity, resistivity and saturation data was utilized for the validating and testing of the AI algorithms. A prototype is developed with Python 3.6 programming language.

2022 ◽  
Vol 6 (1) ◽  
pp. 155-164 ◽  
Author(s):  
Fadhila Hamza

This paper shows empirically the impact of organizational and behavioral determinants on the CEO's investment horizon choice, using artificial intelligence explanatory methods. We apply our approach to 100 Saudi firms. We test the effect of three organizational determinants: ownership concentration, board independence, and CEO remuneration system; and three behavioral determinants: myopia, the locus of control and commitment, on the CEO's investment horizon choice. The study’s key finding is that executives' commitment bias is the most important variable in terms of modal value that affects firms' long-term investment choice. We also find a positive and significant relationship between myopia and long-term investment choice, whereas the lowliest determinant of the horizon choice is the locus of control. More generally, these results show that CEOs who are likely to be the most myopic may display long-term behavior with the existence of high cognitive involvement.


2019 ◽  
Vol 2019 (1) ◽  
pp. 331-338 ◽  
Author(s):  
Jérémie Gerhardt ◽  
Michael E. Miller ◽  
Hyunjin Yoo ◽  
Tara Akhavan

In this paper we discuss a model to estimate the power consumption and lifetime (LT) of an OLED display based on its pixel value and the brightness setting of the screen (scbr). This model is used to illustrate the effect of OLED aging on display color characteristics. Model parameters are based on power consumption measurement of a given display for a number of pixel and scbr combinations. OLED LT is often given for the most stressful display operating situation, i.e. white image at maximum scbr, but having the ability to predict the LT for other configurations can be meaningful to estimate the impact and quality of new image processing algorithms. After explaining our model we present a use case to illustrate how we use it to evaluate the impact of an image processing algorithm for brightness adaptation.


2020 ◽  
Author(s):  
Christopher Welker ◽  
David France ◽  
Alice Henty ◽  
Thalia Wheatley

Advances in artificial intelligence (AI) enable the creation of videos in which a person appears to say or do things they did not. The impact of these so-called “deepfakes” hinges on their perceived realness. Here we tested different versions of deepfake faces for Welcome to Chechnya, a documentary that used face swaps to protect the privacy of Chechen torture survivors who were persecuted because of their sexual orientation. AI face swaps that replace an entire face with another were perceived as more human-like and less unsettling compared to partial face swaps that left the survivors’ original eyes unaltered. The full-face swap was deemed the least unsettling even in comparison to the original (unaltered) face. When rendered in full, AI face swaps can appear human and avoid aversive responses in the viewer associated with the uncanny valley.


2020 ◽  
Vol 28 ◽  
Author(s):  
Valeria Visco ◽  
Germano Junior Ferruzzi ◽  
Federico Nicastro ◽  
Nicola Virtuoso ◽  
Albino Carrizzo ◽  
...  

Background: In the real world, medical practice is changing hand in hand with the development of new Artificial Intelligence (AI) systems and problems from different areas have been successfully solved using AI algorithms. Specifically, the use of AI techniques in setting up or building precision medicine is significant in terms of the accuracy of disease discovery and tailored treatment. Moreover, with the use of technology, clinical personnel can deliver a very much efficient healthcare service. Objective: This article reviews AI state-of-the-art in cardiovascular disease management, focusing on diagnostic and therapeutic improvements. Methods: To that end, we conducted a detailed PubMed search on AI application from distinct areas of cardiology: heart failure, arterial hypertension, atrial fibrillation, syncope and cardiovascular rehabilitation. Particularly, to assess the impact of these technologies in clinical decision-making, this research considers technical and medical aspects. Results: On one hand, some devices in heart failure, atrial fibrillation and cardiac rehabilitation represent an inexpensive, not invasive or not very invasive approach to long-term surveillance and management in these areas. On the other hand, the availability of large datasets (big data) is a useful tool to predict the development and outcome of many cardiovascular diseases. In summary, with this new guided therapy, the physician can supply prompt, individualised, and tailored treatment and the patients feel safe as they are continuously monitored, with a significant psychological effect. Conclusion: Soon, tailored patient care via telemonitoring can improve the clinical practice because AI-based systems support cardiologists in daily medical activities, improving disease detection and treatment. However, the physician-patient relationship remains a pivotal step.


Author(s):  
Nagla Rizk

This chapter looks at the challenges, opportunities, and tensions facing the equitable development of artificial intelligence (AI) in the MENA region in the aftermath of the Arab Spring. While diverse in their natural and human resource endowments, countries of the region share a commonality in the predominance of a youthful population amid complex political and economic contexts. Rampant unemployment—especially among a growing young population—together with informality, gender, and digital inequalities, will likely shape the impact of AI technologies, especially in the region’s labor-abundant resource-poor countries. The chapter then analyzes issues related to data, legislative environment, infrastructure, and human resources as key inputs to AI technologies which in their current state may exacerbate existing inequalities. Ultimately, the promise for AI technologies for inclusion and helping mitigate inequalities lies in harnessing grounds-up youth entrepreneurship and innovation initiatives driven by data and AI, with a few hopeful signs coming from national policies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jie Zhu ◽  
Blanca Gallego

AbstractEpidemic models are being used by governments to inform public health strategies to reduce the spread of SARS-CoV-2. They simulate potential scenarios by manipulating model parameters that control processes of disease transmission and recovery. However, the validity of these parameters is challenged by the uncertainty of the impact of public health interventions on disease transmission, and the forecasting accuracy of these models is rarely investigated during an outbreak. We fitted a stochastic transmission model on reported cases, recoveries and deaths associated with SARS-CoV-2 infection across 101 countries. The dynamics of disease transmission was represented in terms of the daily effective reproduction number ($$R_t$$ R t ). The relationship between public health interventions and $$R_t$$ R t was explored, firstly using a hierarchical clustering algorithm on initial $$R_t$$ R t patterns, and secondly computing the time-lagged cross correlation among the daily number of policies implemented, $$R_t$$ R t , and daily incidence counts in subsequent months. The impact of updating $$R_t$$ R t every time a prediction is made on the forecasting accuracy of the model was investigated. We identified 5 groups of countries with distinct transmission patterns during the first 6 months of the pandemic. Early adoption of social distancing measures and a shorter gap between interventions were associated with a reduction on the duration of outbreaks. The lagged correlation analysis revealed that increased policy volume was associated with lower future $$R_t$$ R t (75 days lag), while a lower $$R_t$$ R t was associated with lower future policy volume (102 days lag). Lastly, the outbreak prediction accuracy of the model using dynamically updated $$R_t$$ R t produced an average AUROC of 0.72 (0.708, 0.723) compared to 0.56 (0.555, 0.568) when $$R_t$$ R t was kept constant. Monitoring the evolution of $$R_t$$ R t during an epidemic is an important complementary piece of information to reported daily counts, recoveries and deaths, since it provides an early signal of the efficacy of containment measures. Using updated $$R_t$$ R t values produces significantly better predictions of future outbreaks. Our results found variation in the effect of early public health interventions on the evolution of $$R_t$$ R t over time and across countries, which could not be explained solely by the timing and number of the adopted interventions.


Sign in / Sign up

Export Citation Format

Share Document