Unique 15kpsi Multistage Fracturing Liner System Delivers Solution to Overcome Tight Formation Challenges

2021 ◽  
Author(s):  
Beau R Wright ◽  
Parvez Khan

Abstract Open hole Multistage Fracturing (MSF) systems have been deployed for treating open hole formations with multiple, high rate hydraulic fracturing stages while gaining efficiency during pumping operations unlike traditional plug-and-perf operations. One important challenge within the industry was availability of an open hole packer system that can overcome tough wellbore conditions during deployment and function as designed during the high rate high pressure stimulation operations. This paper will discuss the successful planning and deployment of one such system. For successful deployment of any open hole fracturing completion, one must first consider the environment that the system will be deployed into. Lateral length, open hole size, parent casing size and tubing stresses during fracturing and production all inclusively influence the need for a robust and reliable system. Other several important considerations to be deployed as a liner is the compatibility of the completion tools with the Liner deployment system, the robustness of being deployed into challenging open hole conditions where capability of high circulating rates and rotation become mandatory to get the bottom hole assembly (BHA) to its final setting depth. Last but not least, in order to achieve successful stimulation, each component of the system after overcoming all the deployment obstacles should function as designed withstanding treating differentials as high as 15kpsi, while simultaneously accommodating induced axial loads caused by these high-pressure treatments. The development and testing of individual components of the system was done keeping in mind wellbore instability and obstacles the completion will have to overcome during deployment. The field execution was planned with close collaboration with the operator and other key services that were involved for drilling the well. Real-time monitoring of the well allowed for simultaneous swift implementation of changes required on tool activation pressures, identification of hazards and mitigation plan to overcome challenges in order to execute the job successfully. It is worth mentioning that the successful deployment of this system represents the first use of additive manufacturing in high pressure, hydraulic set open hole packers. This technology allowed overcoming the barriers of challenges associated with deploying open hole completion in tight challenging formations that would otherwise have limited deployment capabilities.

2021 ◽  
Author(s):  
Louis Frederic Antoine Champain ◽  
Syed Zahoor Ullah ◽  
Alexey Ruzhnikov

Abstract Drilling and completion of the surface and intermediate sections in some fields is extremely challenging due to wellbore instability, especially accomplished with complete losses. Such circumstances lead to several time-consuming stuck pipe events, when existing standard ways of drilling did not lead to a permanent resolution of the problems. After exhausting the available conventional techniques without sustainable success, unorthodox solutions were required to justify the well delivery time and cost. Here comes the Casing While Drilling (CwD), being the most time and cost-effective solution to wellbore instability. CwD is introduced at full throttle aiming at the well cost reduction and well quality improvement. The implementation plan was divided in three phases. The first phase was a remedial solution to surface and intermediate sections drilling and casing off to prevent stuck pipe events and provide smooth well delivery performances. After successful implementation of CwD first phase, CwD was taken to the next level by shifting it from a mitigation to an optimization measure. Each step of CwD shoe-to-shoe operations was analysed to improve its performances: drill-out (D/O) of 18⅝-in shoe track with CwD, optimum drilling parameters per formation and CwD bit design. Implemented in 19 wells, CwD shoe-to-shoe performances have been brought up or even above standard rotary bottom hole assembly (BHA) benchmark. Planning for third phase is undergoing whereby CwD is aiming to optimize a well construction to reduce well delivery time, by combining surface and intermediate sections thus eliminating one casing string. Numerous challenges are being worked on including open hole (OH) isolation packer which conform to and seal with the borehole uneven surface. Special "for purpose built" expandable steel packer and stage tool have been manufactured and qualified for the specific application. A candidate well has been chosen and agreed for first trial. The key areas of improvement include, drilling and casing off the surface and intermediate sections while competing with standard rotary BHA performances and slimming down the well profile towards tremendous time and costs savings. This paper encompasses details of constructions of various wells with sufficient contingencies to combat any expected hole problems without compromising the well quality while keeping the well within budget and planned time. It also provides an analysis of the well trials that were executed during the implementation of first and second phases of CwD implementation and the captured lessons learnt which are being carried forward to the next phase. This paper provides the technique on how CwD can be used to help with three aspects of drilling, successfully mitigating holes problems by reducing OH exposure time and to eliminate drill string tripping and modifying conventional casing design to reduce well time and cost by eliminating one casing string.


2008 ◽  
Vol 74 (24) ◽  
pp. 7821-7823 ◽  
Author(s):  
Kai Linke ◽  
Nagarajan Periasamy ◽  
Matthias Ehrmann ◽  
Roland Winter ◽  
Rudi F. Vogel

ABSTRACT High hydrostatic pressure (HHP) is suggested to influence the structure and function of membranes and/or integrated proteins. We demonstrate for the first time HHP-induced dimer dissociation of membrane proteins in vivo with Vibrio cholerae ToxR variants in Escherichia coli reporter strains carrying ctx::lacZ fusions. Dimerization ceased at 20 to 50 MPa depending on the nature of the transmembrane segments rather than on changes in the ToxR lipid bilayer environment.


2010 ◽  
Vol 98 (3) ◽  
pp. 182a
Author(s):  
Masayoshi Nishiyama ◽  
Yoshifumi Kimura ◽  
Masahide Terazima

Author(s):  
Alwyn P. Johnson ◽  
Bradley Veatch

Upper-extremity (UE) prostheses are increasingly more functional and proportionately more costly, rendering them largely unattainable for impoverished amputees in the United States (US) and abroad. Recognizing the increasing need for appropriate devices, PhysioNetics, LLC is developing a heavy-duty, transradial body-powered (BP) UE prosthesis which can be prescribed with minimal instruction. The design of the key components, the split-hook terminal device [TD] and universal adjustable interface is presented in this paper. The TD is primarily fabricated from plastics to eliminate galvanic corrosion in saltwater environments, weighs 5.4 oz (153 g) and uses inexpensive rubber bands to generate pinch force. Unique gripping contours provide versatile grasp and replicate five (5) prehension patterns while six (6) discrete force settings provide 2 – 17 lbf (8.9 – 76 N) of pinch. Three (3) universal interface sizes (small, medium, and large) accommodate most amputees and comfortably support axial loads up to 40 lbf (178 N). Estimated manufacturing cost for a complete unit is less than US$250. Field testers report lower but comparable comfort to their individually custom-fabricated interfaces, and are highly satisfied with fit and function of the prosthesis overall. Ongoing development includes reduction of manufacturing costs, increasing interface comfort and implementing task-specific variant designs.


2021 ◽  
Vol 05 (01) ◽  
pp. 04-10
Author(s):  
Sabir Babaev ◽  
Ibrahim Habibov ◽  
Zohra Abiyeva

Prospects for the further development of the oil and gas industry are mainly associated with the development and commissioning of high-rate fields. In this regard, the production of more economical and durable equipment by machine-building enterprises, an increase in the level of its reliability and competitiveness, as well as further improvement of technological production processes, is of paramount importance. The evolution of technology in a broad sense is a representation of changes in designs, manufacturing technology, their direction and patterns. In this case, a certain state of any class of TC is considered as a result of long-term changes in its previous state; transition from existing and applied in practice vehicles to new models that differ from previous designs. These transitions, as a rule, are associated with the improvement of any performance criteria or quality indicators of the vehicle and are progressive in nature. The work is devoted to the study of the evolution of the quality of high-pressure valves during the period of their intensive development. Keywords: technical system, evolution of technology, high-pressure valves, shut-off devices, gate.


2021 ◽  
Author(s):  
Irma Kusumawati ◽  
Birger Heigre ◽  
Hunter Whitfield ◽  
Samuel Bremner ◽  
Andrea Sbordone ◽  
...  

Abstract This paper describes the utilization of a riserless light well intervention (RLWI) vessel with well control system and flexible downlines to execute a re-stimulation campaign on subsea injection wells located in the Norwegian Continental shelf in the summer of 2019 and 2020. A riserless light well intervention (RLWI) vessel with well control system and flexible downlines was used in combination with a stimulation vessel. The objective of each campaign was to increase injectivity in the wells with high-rate acid treatments. The lessons learned from the 2019 campaign were applied to the 2020 campaign, resulting in reduced health and safety exposure, and improved operational efficiency. Analysis of the treatments and their impact on injection and field pressure support was conducted to assess the effects of these improvements and provide insights for how the treatments can be applied to vessel stimulation in general. In each campaign, the RLWI vessel was connected to the subsea asset, and a dedicated stimulation vessel provided stimulation fluids via a high-pressure flexible hose connected between the two vessels. Both campaigns saw high treatment pump rates of up to 60 bbl/min with low-pH crosslinked gel fluids, 28% hydrochloric acid, and diverters in the form of ball sealers and rock salt. Hose deployment methodologies between the two vessels differed in the two campaigns. The 2019 campaign employed a conventional transfer utilizing the marine crane on the RLWI vessel to lift and lower the hose into a preexisting hanger. Learnings from this operation led to the development and use of a winch pull-in method in which the hose connection was accomplished with a hot stab connector on the RLWI vessel, eliminating human intervention and the use of the crane. The 2019 and 2020 campaigns successfully stimulated five and six subsea injection wells, respectively, and realized post-stimulation improvement in injection rates of 135%. One year of field monitoring from the first campaign shows pressure support benefits with improvements in production throughout the connecting area of the field. The winch pull-in method of hose deployment between the vessels achieved time improvements of 8 hours per stimulation treatment. In addition, the added flexibility of not needing to be within crane reach gave the operation extended working weather limits. The overall result was a significant improvement in operating efficiency between the 2019 and 2020 campaigns. The operations showed how high-rate stimulation can be achieved on subsea assets with the use of an RLWI and stimulation vessels. Detailed analysis of the operational efficiency of each campaign was performed, and the improvements from one campaign to the next documented. The winch pull-in method is a new way of high-pressure hose transfer that can be applied to future stimulation vessel operations to improve operational safety and efficiency.


2020 ◽  
Vol 5 (4) ◽  
pp. 2473011420S0003
Author(s):  
Gabriel F. Ferraz ◽  
Tatiana F. Santos ◽  
Daniel Oksman ◽  
Miguel V. Pereira Filho

Category: Lesser Toes; Midfoot/Forefoot Introduction/Purpose: Bunionette is a very common foot disorder, and several kinds of corrective surgery have been described. With the popularization of minimally invasive surgeries, the forefoot region became a suitable area for this kind of technique. The aim of this study was to evaluate the results of oblique distal osteotomy of the fifth metatarsal adapted for the percutaneous approach. Methods: We prospectively evaluated 31 consecutive tailor’s bunion patients who underwent surgical correction after failure of conservative treatment between 2016 and 2019, totaling 42 feet. Clinical outcomes such as pain (VAS), function (AOFAS), criteria of personal satisfaction, and complications were evaluated. Radiographic aspects were also included. The Shapiro and Mann- Whitney statistical tests were run in the Stats package within the R environment. Results: The average age of the patients was 69.54 years, and the average follow-up was 13.14 months. There was a decrease of 6.67 points in the VAS for pain (p<0.001) and an increase of 34.94 in AOFAS (p<0.001) after the surgical procedure. Radiographic correction was achieved at both the fifth metatarsophalangeal angle (p<0.001) and intermetatarsal angle (p<0.001), which showed decreased values. There was one case of superficial infection and two cases of nonconsolidation (asymptomatic). A large majority of patients considered the procedure outcome satisfactory. Conclusion: The percutaneous oblique distal osteotomy of the fifth metatarsal for bunionette deformity showed improvement in pain and function and a high rate of personal satisfaction with a low incidence of complications and high capacity to correct the deformity.


Sign in / Sign up

Export Citation Format

Share Document