A Transient Solids Transport Model for Solids Removal Evaluation in Coiled-Tubing Drilling

SPE Journal ◽  
2021 ◽  
pp. 1-18
Author(s):  
Tran A. Tong ◽  
Evren Ozbayoglu ◽  
Yaxin Liu

Summary Poor hole cleaning is a major concern in coiled-tubing drilling (CTD), and it is often associated with long nonproductive time that contributes significantly to the operational cost. In this study, a transient solids transport model is developed based on transport equations of phases in the flow to predict the evolution of solids conveyed in the wellbore. The developed model is able to provide forecasts of the distribution of cuttings along the annulus, which can be important information for deciding to improve solids removal. Based on the concept of a two-layersteady-state model, a 1D time-dependent model is developed using two layers: a lower layer of solids bed and an upper layer of a solid-liquid mixture with the mechanisms of solids deposition and solids entrainment taken into account. The model is discretized by using a finite volume scheme and then solved by employing a semi-implicit numerical solution. The model’s hyperparameters, such as a deposition factor and an entrainment factor, are calibrated with experimental data conducted by the use of the large indoor flow loop (LIFL) to achieve a better match. The model is combined with a 2D cross-sectional model to handle the effect of pipe eccentricity and bed presence. Predictions from the model agree well with the experimental data acquired by using an oil-based mud for the majority of the cases.

Author(s):  
R. Arismendi ◽  
L. Gomez ◽  
S. Wang ◽  
R. Mohan ◽  
O. Shoham ◽  
...  

The hydrodynamic behavior of gas-liquid-solids in a modified GLCC© has been studied for the first time experimentally and theoretically. A GLCC© experimental facility has been designed, constructed and utilized to acquire data on gas-solid-liquid flow in both upstream 2-inch injection line horizontal section and in the 3-inch GLCC©. Experimental data have been acquired for the minimum gas velocity required to transport the solids up to the liquid injection point, and for the minimum liquid injection rate necessary to wet the solids and capture them in the liquid phase. The data have been acquired for 4 solid particle sizes of 5 μm, 25 μm, 50 μm and 150 μm. A mechanistic model has been developed or modified for solids transport/ separation, for the prediction of the minimum transport gas velocity, and the required minimum liquid injection rate. A comparison between the model prediction and the acquired experimental data shows good agreement. The average relative error for minimum transport gas and liquid velocities are, 4.3% and 9.55%, respectively.


2018 ◽  
Vol 84 (10) ◽  
pp. 23-28
Author(s):  
D. A. Golentsov ◽  
A. G. Gulin ◽  
Vladimir A. Likhter ◽  
K. E. Ulybyshev

Destruction of bodies is accompanied by formation of both large and microscopic fragments. Numerous experiments on the rupture of different samples show that those fragments carry a positive electric charge. his phenomenon is of interest from the viewpoint of its potential application to contactless diagnostics of the early stage of destruction of the elements in various technical devices. However, the lack of understanding the nature of this phenomenon restricts the possibility of its practical applications. Experimental studies were carried out using an apparatus that allowed direct measurements of the total charge of the microparticles formed upon sample rupture and determination of their size and quantity. The results of rupture tests of duralumin and electrical steel showed that the size of microparticles is several tens of microns, the particle charge per particle is on the order of 10–14 C, and their amount can be estimated as the ratio of the cross-sectional area of the sample at the point of discontinuity to the square of the microparticle size. A model of charge formation on the microparticles is developed proceeding from the experimental data and current concept of the electron gas in metals. The model makes it possible to determine the charge of the microparticle using data on the particle size and mechanical and electrical properties of the material. Model estimates of the total charge of particles show order-of-magnitude agreement with the experimental data.


1992 ◽  
Vol 23 (2) ◽  
pp. 89-104 ◽  
Author(s):  
Ole H. Jacobsen ◽  
Feike J. Leij ◽  
Martinus Th. van Genuchten

Breakthrough curves of Cl and 3H2O were obtained during steady unsaturated flow in five lysimeters containing an undisturbed coarse sand (Orthic Haplohumod). The experimental data were analyzed in terms of the classical two-parameter convection-dispersion equation and a four-parameter two-region type physical nonequilibrium solute transport model. Model parameters were obtained by both curve fitting and time moment analysis. The four-parameter model provided a much better fit to the data for three soil columns, but performed only slightly better for the two remaining columns. The retardation factor for Cl was about 10 % less than for 3H2O, indicating some anion exclusion. For the four-parameter model the average immobile water fraction was 0.14 and the Peclet numbers of the mobile region varied between 50 and 200. Time moments analysis proved to be a useful tool for quantifying the break through curve (BTC) although the moments were found to be sensitive to experimental scattering in the measured data at larger times. Also, fitted parameters described the experimental data better than moment generated parameter values.


2010 ◽  
Vol 51 (1) ◽  
pp. 013001 ◽  
Author(s):  
T.A. Casper ◽  
W.H. Meyer ◽  
G.L. Jackson ◽  
T.C. Luce ◽  
A.W. Hyatt ◽  
...  

2015 ◽  
Vol 45 (8) ◽  
pp. 2048-2069 ◽  
Author(s):  
Elisabeth Schulz ◽  
Henk M. Schuttelaars ◽  
Ulf Gräwe ◽  
Hans Burchard

AbstractThe dependency of the estuarine circulation on the depth-to-width ratio of a periodically, weakly stratified tidal estuary is systematically investigated here for the first time. Currents, salinity, and other properties are simulated by means of the General Estuarine Transport Model (GETM) in cross-sectional slice mode, applying a symmetric Gaussian-shaped depth profile. The width is varied over four orders of magnitude. The individual along-channel circulation contributions from tidal straining, gravitation, advection, etc., are calculated and the impact of the depth-to-width ratio on their intensity is presented and elucidated. It is found that the estuarine circulation exhibits a distinct maximum in medium-wide channels (intermediate depth-to-width ratio depending on various parameters), which is caused by a maximum of the tidal straining contribution. This maximum is related to a strong tidal asymmetry of eddy viscosity and shear created by secondary strain-induced periodic stratification (2SIPS): in medium channels, transverse circulation generated by lateral density gradients due to laterally differential longitudinal advection induces stable stratification at the end of the flood phase, which is further increased during ebb by longitudinal straining (SIPS). Thus, eddy viscosity is low and shear is strong in the entire ebb phase. During flood, SIPS decreases the stratification so that eddy viscosity is high and shear is weak. The circulation resulting from this viscosity–shear correlation, the tidal straining circulation, is oriented like the classical, gravitational circulation, with riverine outflow at the surface and oceanic inflow close to the bottom. In medium channels, it is about 5 times as strong as in wide (quasi one-dimensional) channels, in which 2SIPS is negligible.


2013 ◽  
Vol 48 (3) ◽  
pp. 232-242
Author(s):  
Ian H. Halket ◽  
Peter F. Rasmussen ◽  
John C. Doering

One-dimensional substance transport models assume that the river reach modelled has a uniform cross-sectional shape which manifests as a constant average velocity in the model equations. Rarely do rivers meet this criterion. Their channels are seldom uniform in shape but rather alternate in a quasi-periodic manner between pool and riffle sections. This bedform sequencing imparts a corresponding variation in the average cross-sectional velocity which is not accounted for in constant velocity transport models. The literature points out that the pool and riffle planform may be the reason for the sometimes poor predictions obtained from these models. This paper presents a new variable velocity transport model and confirms that the fluctuation in average cross-sectional velocity caused by the pool and riffle planform does have a marked effect on transport in rivers. The pool and riffle planform promotes an enhanced decay of a substance when a first-order biochemical reaction is simulated with the new transport equation. Investigation of the analytical solution shows that the enhanced decay is the result of the overall lower velocity experienced in a pool and riffle channel as opposed to a uniform channel. This difference in transport velocity between a pool and riffle channel and a uniform channel becomes more pronounced as flow declines a critical finding for total maximum daily load calculations because these regulatory limits are usually determined for low flow levels by models that do not account for this phenomenon.


Paleobiology ◽  
2001 ◽  
Vol 27 (1) ◽  
pp. 14-38 ◽  
Author(s):  
Richard W. Blob

Analyses of limb joint morphology in nonmammalian therapsid “mammal-like reptiles” have suggested that among many lineages, individual animals were capable of shifting between sprawling and upright hindlimb postures, much like modern crocodilians. The ability to use multiple limb postures thus might have been ancestral to the generally more upright posture that evolved during the transition from “mammal-like reptiles” to mammals. Here I derive a biomechanical model to test this hypothesis through calculations of expected posture-related changes in femoral stress for therapsid taxa using different limb postures. The model incorporates morphological data from fossil specimens and experimental data from force platform experiments on iguanas and alligators.Experimental data suggest that the evolutionary transition from sprawling to nonsprawling posture was accompanied by a change in the predominant loading regime of the limb bones, from torsion to bending. Changes in the cross-sectional morphology of the hindlimb bones between sphenacodontid “pelycosaurs” and gorgonopsid therapsids are consistent with the hypothesis that bending loads increased in importance early in therapsid evolution; thus, bending stresses are an appropriate model for the maximal loads experienced by the limb bones of theriodont therapsids. Results from the model used to estimate stresses in these taxa do not refute the use of both sprawling and more upright stance among basal theriodont therapsids. Thus, the hypothesis that the use of multiple postures was ancestral to the more upright posture typical of most mammals is biomechanically plausible. Model calculations also indicate that the axial rotation of the femur typical in sprawling locomotion can reduce peak bending stresses. Therefore, as experimental data from alligators and iguanas suggest, the evolution of nonsprawling limb posture and kinematics in therapsids might have been accompanied by increased limb bone bending stress.


2021 ◽  
Vol 21 (3) ◽  
pp. 554
Author(s):  
Putri Restu Dewati ◽  
Rochmadi Rochmadi ◽  
Abdul Rohman ◽  
Avido Yuliestyan ◽  
Arief Budiman

Astaxanthin is a natural antioxidant, and the highest content of this compound is found in Haematococcus pluvialis microalgae. Microwave-assisted extraction (MAE) is one of the environmentally friendly extraction methods and has many advantages. This study aims to investigate the extraction of astaxanthin through the MAE method using various solvents. Several equilibrium models were proposed to describe this solid-liquid equilibrium. The solid-liquid extraction equilibrium parameters were determined by minimizing the sum of squares of errors (SSE), in which equilibrium constants were needed for scaling up purposes. Previously, the microalgae were pretreated with HCl to soften their cell walls in order to improve the extraction recovery. In this study, dichloromethane, acetone, methanol, and ethanol were used as the solvents for extraction. The astaxanthin concentration was determined by high-performance liquid chromatography (HPLC) and spectrophotometry. Astaxanthin was found to attain equilibrium at 57.42% recovery in a single-step extraction. Thus, several steps were required in sequence to obtain an optimum recovery. The experimental data were fitted to three equilibrium models, namely, Henry, Freundlich, and Langmuir models. The experimental data were well fitted to all the models for the extraction in dichloromethane, methanol, ethanol and acetone, as evident from the almost same SSE value for each model.


2013 ◽  
Vol 69 (1) ◽  
pp. 99-105 ◽  
Author(s):  
R. Penn ◽  
M. Schütze ◽  
E. Friedler

Onsite greywater reuse (GWR) and installation of water-efficient toilets (WETs) reduce urban freshwater demand and thus enhance urban water use sustainability. Research on GWR and WETs has generally overlooked their potential effects on municipal sewer systems: GWR and WETs affect the flow regime in sewers, and consequently also influence gross solids transport. To asses these impacts, a gross solids transport model was developed. The model is based on approaches found in the literature. Hydrodynamic calculations of sewage flow were performed using the SIMBA6 simulator and then used for the gross solid movement models. Flow characteristics in the up- and downstream sections of the sewer network differ. Therefore different approaches were used to model solids movement in each of these two parts. Each model determines whether a solid moves as a result of a momentary sewage flow, and if it moves, calculation of its velocity is possible. The paper shows the adoption and implementation of two gross solids transport models using SIMBA6 and depicts the results of the effects of various GWR and WET scenarios on gross solids movement in sewers for a real case study in Israel.


Sign in / Sign up

Export Citation Format

Share Document