scholarly journals Validation of the thermal transport model used for ITER startup scenario predictions with DIII-D experimental data

2010 ◽  
Vol 51 (1) ◽  
pp. 013001 ◽  
Author(s):  
T.A. Casper ◽  
W.H. Meyer ◽  
G.L. Jackson ◽  
T.C. Luce ◽  
A.W. Hyatt ◽  
...  
1992 ◽  
Vol 23 (2) ◽  
pp. 89-104 ◽  
Author(s):  
Ole H. Jacobsen ◽  
Feike J. Leij ◽  
Martinus Th. van Genuchten

Breakthrough curves of Cl and 3H2O were obtained during steady unsaturated flow in five lysimeters containing an undisturbed coarse sand (Orthic Haplohumod). The experimental data were analyzed in terms of the classical two-parameter convection-dispersion equation and a four-parameter two-region type physical nonequilibrium solute transport model. Model parameters were obtained by both curve fitting and time moment analysis. The four-parameter model provided a much better fit to the data for three soil columns, but performed only slightly better for the two remaining columns. The retardation factor for Cl was about 10 % less than for 3H2O, indicating some anion exclusion. For the four-parameter model the average immobile water fraction was 0.14 and the Peclet numbers of the mobile region varied between 50 and 200. Time moments analysis proved to be a useful tool for quantifying the break through curve (BTC) although the moments were found to be sensitive to experimental scattering in the measured data at larger times. Also, fitted parameters described the experimental data better than moment generated parameter values.


AIChE Journal ◽  
2015 ◽  
Vol 61 (8) ◽  
pp. 2647-2656 ◽  
Author(s):  
Lindsey Yue ◽  
Wojciech Lipiński

2009 ◽  
Vol 1229 ◽  
Author(s):  
Thomas W Brown ◽  
Edward Hensel

AbstractThermal transport in crystalline materials at various length scales can be modeled by the Boltzmann transport equation (BTE). A statistical phonon transport (SPT) model is presented that solves the BTE in a statistical framework that incorporates a unique state-based phonon transport methodology. Anisotropy of the first Brillouin zone (BZ) is captured by utilizing directionally-dependent dispersion curves obtained from lattice dynamics calculations. A rigorous implementation of phonon energy and pseudo-momentum conservation is implemented in the ballistic thermal transport regime for a homogeneous silicon nanowire with adiabatic specular boundary conditions.


2021 ◽  
Author(s):  
Sylvie Antoun

This thesis introduces an enhanced Molecular Dynamics (MD) approach, blended with fine-tuned Force Field (FF) models to reflect more realistic experimental conditions and achieve a precise representation of the atomic interactions in complex systems. Firstly, an enhanced MD algorithm consisting of an upgraded non-equilibrium integration scheme, namely eHEX, coupled with an augmented TraPPE-UA force field, was generated and put to use to predict Soret effect in a binary mixture: n-pentane/n-decane. The results were compared to other MD approaches and validated with respect to benchmarked experimental data. The suggested method showed a closer agreement with experimental data than the previous MD findings. The reinforced potential field (TraPPE-UA) was capable of reflecting the real molecular interactions between the hydrocarbons and reproduce the liquid mixture properties at different conditions. Moreover, the extended HEX method succeeded in conserving the system’s overall energy with minor fluctuations and attaining a stationary state, ensuring the precision of the integration scheme and the satisfaction of local equilibrium. Secondly, the performance of the previously proposed approach was further studied to test its performance on a ternary mixture of methane/n-butane/n-dodecane at five different compositions. Thermodiffusion separation ratio of each component was assessed at 333.15 K and 35 MPa, and compared to the experimental data as well as 3 other MD models from the literature. A good qualitative agreement between the experimental data and the MD model observed in this work was observed, displaying the least deviation when compared to the other MD approaches. The method was capable of adequately representing the physics behind the thermodiffusive separation and deepening the microscopic understanding of the segregation process in a ternary mixture undergoing large thermal gradients. Put differently, the approach elucidates the relative contribution of the cross-interactions found between the unlike species in the mixture and their corresponding composition. Next, an enhanced MD approach was also presented to predict the dynamics and thermophysical properties of suspended γ-alumina nanoparticles (NPs) in acidic aqueous solutions. The previous MD work have unveiled numerous impediments in terms of reproducing the thermal transport phenomena in nanofluids. A hybrid potential field, comprised of refined orce field models (ClayFF and SPC/E), was implemented to allow a precise integration of the nanoscale phenomena into the dynamics and structure of charged alumina NPs, thereby bridging the challenging gap between the solid-liquid interfacial chemistry and the overall thermodynamic properties. The original CLAYFF was augmented to properly account for the energy and momentum transfer between the water molecules and the positively charged NPs, while keeping the number of parameters small enough to allow modeling of a relatively large nanofluidic system.The results were in good agreement with the experimental data. An increase of the NPs volumetric concentration (φ) lead to the enhancement of thermal conductivity along with an increase of viscosity. The results demonstrate the crucial role played by the repulsive electrostatic forces yielding well-dispersed NP suspensions, specially at low φ. The post analysis of Mouromtseff number demonstrated that at lower φ, the system show a higher propensity for stability and enhancement for φ less than 2%, specially at high temperatures. On the contrary, for volumetric concentrations higher than 2%, the system thermal performance deteriorates which is expected due to the fact that the system exhibit a critical condition of aggregation and clogging. With all of the above findings in mind, the MD framework presented in this thesis represents an improved step towards a precise and computationally balanced MD modelling that bridges the relation between molecular signatures and macroscopic features, capable of overcoming the shortcomings present in mainly two emerging thermal applications: 1) Soret effect in hydrocarbon mixture and 2) thermal transport of alumina-water nanofluids.


2006 ◽  
Vol 914 ◽  
Author(s):  
Manu Shamsa ◽  
Patrick Morrow ◽  
Shriram Ramanathan

AbstractUnderstanding thermal conduction in interlayer dielectrics (ILDs) is important for the optimal design of interconnect layers in backend semiconductor processing for future high-performance nano-scale devices. Reduced thermal conductivity of porous ILDs for example can adversely affect the temperature rise in the embedded metal lines leading to un-desirable reliability issues and design constraints. In this paper, we report results of our theoretical and experimental investigation of thermal transport in amorphous and porous dielectrics. A phonon-hopping model has been adapted to calculate the thermal conductivity in disordered materials. The value of hopping integral has been calculated by comparing the modeling results with experimental data for various amorphous and porous materials. The model shows reasonable agreement with experimental data for various amorphous materials including SiO2 and other glasses over a wide temperature range from 50K – 300K. The model suggests that the hopping of localized high frequency phonons is a dominant thermal transport mechanism in such material systems.


2010 ◽  
Vol 19 (08n09) ◽  
pp. 1534-1544 ◽  
Author(s):  
◽  
E. GALICHET ◽  
M. F. RIVET ◽  
B. BORDERIE ◽  
M. COLONNA ◽  
...  

Isospin diffusion is probed as a function of the dissipated energy by studying two systems 58 Ni +58 Ni and 58 Ni +197 Au , over the incident energy range 52-74A MeV. Experimental data are compared with the results of a microscopic transport model with two different parameterizations of the symmetry energy term. A better overall agreement between data and simulations is obtained when using a symmetry term with a potential part linearly increasing with nuclear density. The isospin equilibration time at 52 A MeV is estimated to 130 ± 10 fm/c.


1991 ◽  
Vol 113 (3) ◽  
pp. 741-746 ◽  
Author(s):  
S. H. Chan ◽  
K. F. Ghassemi

The present study proposes a multispecies transport model to predict calcium carbonate deposition. The model has been applied to predict the deposition flux, the mean fouling layer thickness, and the profile of local fouling thickness along a heated plate of a laminar falling film. Good agreement is found when comparing with experimental data. Similarly, the model is applied to predict the fouling layer in a turbulent annulus flow system and a good agreement of the predicted results is also found with recent experimental data. Finally, solutions in dimensionless forms are presented to show the effects of various dimensionless parameters on calcium carbonate deposition.


Sign in / Sign up

Export Citation Format

Share Document