Cement Conundrum: Valuable Lessons Learned for Sustaining Production

2021 ◽  
Author(s):  
Siti Najmi Farhan binti Zulkipli

Abstract Addressing wellbore integrity through cement evaluation has been an evergreen topic which frequently catches major operators by surprise due to premature water or gas breakthrough causing low production attainability from the wells. Managing idle well strings arising from integrity issues is also a challenge throughout the production period. The remedial solutions to these issues do not come conveniently and require high cost during late life well intervention which often erodes the well economic limit. A critical element of wellbore barrier which is cement integrity evaluation is proposed to be uplifted and given a new perspective to define success criteria for producer wells to achieve certain reserves addition and production recovery. This paper will highlight integrated factors affecting cement bond quality, impact to well production, potential remedies for poor cement bond observed leveraging on the enhanced workflow and new technology and way forward to proactively prevent the unwanted circumstances in the first opportunity taken. A set of recommendations and prioritization criteria for future cement improvement will be also highlighted. Several case specific wells logged with variable cement bond evaluation tools are re-assessed and deep-dived to trace the root causes for unsatisfactory cement bond quality observed which include reservoir characteristics, understanding anomalies during drilling and cementing operation, identifying cement recipe used, log processing parameters applied and observing best practices during cementing operation to improve the quality. New and emerging cement evaluation technology inclusive of radioactive-based logging to meet specific well objectives will be also briefly discussed in terms of differences and technical deliverables. Looking at each spectrum, results show that there are several interdependent factors contributing to poor cement bond quality observed. Accurate understanding of formation behavior, designing fit-for-purpose cement recipe and adequate planning for cementing operation on well-by-well basis are among the top- notch approaches to be applied for an acceptable cement bond quality and placement. Statistics show that 27% to 64% of production attainability is achieved by wells with good cement quality within the first 3 months of production and this increases to 85% to 98% up until 7 months of production period, while only 12% production attainability achieved for those wells with adverse cement quality issue. In another well, water cut as high as 47% since the first day of production is observed which keeps increasing up to 40% thereafter. In a nutshell, cement evaluation exercise shall not be treated as vacuum, instead it requires an integrated foundation and close collaboration to materialize the desired outcomes. Arresting the issue with the right approach in the first place will be the enabler for optimum well performance and productivity to exceed the recovery target.

2019 ◽  
Vol 18 (1-2) ◽  
pp. 101-128
Author(s):  
Mair E. Lloyd ◽  
James Robson

Abstract Between 2000 and 2013, over 8,000 students studied the module Reading Classical Latin at the Open University, the United Kingdom’s largest distance education provider. But while many learners attained high grades, a significant proportion withdrew from study or failed the module. In 2015, the original module was replaced with a completely new course, Classical Latin: The Language of Ancient Rome. This article details the innovative ways in which new technology and pedagogical theory from Modern Foreign Language (MFL) learning were drawn on by the team designing this new module, resulting in a learning experience which gives greater emphasis to elements such as spoken Latin, the intrinsic pleasure of reading, and cultural context. The (largely positive) effects of these pedagogical changes on student success and satisfaction are subsequently analysed using a rich mix of qualitative and quantitative data. Finally, the authors reflect on lessons learned and the possibilities for future research and enhancement.


2021 ◽  
Author(s):  
Zhihua Wang ◽  
Daniel Newton ◽  
Aqib Qureshi ◽  
Yoshito Uchiyama ◽  
Georgina Corona ◽  
...  

Abstract This Extended Reach Drilling (ERD) field re-development of a giant offshore field in the United Arab Emirates (UAE) requires in most cases extremely long laterals to reach the defined reservoir targets. However, certain areas of the field show permeability and / or pressure variations along the horizontal laterals. This heterogeneity requires an inflow control device (ICD) lower completion liner to deliver the required well performance that will adequately produce and sweep the reservoir. The ICD lower completion along with the extremely long laterals means significant time is spent switching the well from reservoir drilling fluid (RDF) non-aqueous fluid (NAF) to an aqueous completion brine. To reduce the amount of rig time spent on the displacement portion of the completion phase, an innovative technology was developed to enable the ICDs to be run in hole in a closed position and enable circulating through the end of the liner. The technology uses a dissolvable material, which is installed in the ICD to temporarily plug it. The dissolvable material is inert to the RDF NAF while the ICDs are run into hole, and then dissolves in brine after the well is displaced from RDF NAF to completion brine, changing the ICDs from closed to an open position. The ability to circulate through the end of the liner, with the support of the plugged ICDs, when the lower completion is deployed and at total depth (TD), enables switching the well from RDF NAF drilling fluid to an aqueous completion brine without the associated rig time of the original displacement method. The technique eliminates the use of a dedicated inner displacement string and allows for the displacement to be performed with the liner running string, saving 4-5 days per well. An added bonus is that the unique design allowed for this feature to be retrofitted to existing standard ICDs providing improved inventory control. In this paper the authors will demonstrate the technology and system developed to perform this operation, as well as the qualification testing, field installations, and lessons learned that were required to take this solution from concept to successful performance improvement initiative.


2021 ◽  
Author(s):  
Mohd Hafizi Ariffin ◽  
Muhammad Idraki M Khalil ◽  
Abdullah M Razali ◽  
M Iman Mostaffa

Abstract Most of the oil fields in Sarawak has already producing more than 30 years. When the fields are this old, the team is most certainly facing a lot of problems with aging equipment and facilities. Furthermore, the initial stage of platform installation was not designed to accommodate a large space for an artificial lift system. Most of these fields were designed with gas lift compressors, but because of the space limitation, the platforms can only accommodate a limited gas lift compressor capacity due to space constraints. Furthermore, in recent years, some of the fields just started with their secondary recovery i.e. water, gas injection where the fluid gradient became heavier due to GOR drop or water cut increases. With these limitations and issues, the team needs to be creative in order to prolong the fields’ life with various artificial lift. In order to push the limits, the team begins to improve gas lift distribution among gas lifted wells in the field. This is the cheapest option. Network model recommends the best distribution for each gas lifted wells. Gas lifted wells performance highly dependent on fluid weight, compressor pressure, and reservoir pressure. The change of these parameters will impact the production of these wells. Rigorous and prudent data acquisitions are important to predict performance. Some fields are equipped with pressure downhole gauges, wellhead pressure transmitters, and compressor pressure transmitters. The data collected is continuous and good enough to be used for analysis. Instead of depending on compressor capacity, a high-pressure gas well is a good option for gas lift supply. The issues are to find gas well with enough pressure and sustainability. Usually, this was done by sacrificing several barrels of oil to extract the gas. Electrical Submersible Pump (ESP) is a more expensive option compared to a gas lift method. The reason is most of these fields are not designed to accommodate ESP electricity and space requirements. Some equipment needs to be improved before ESP installation. Because of this, the team were considering new technology such as Thru Tubing Electrical Submersible Pump (TTESP) for a cheaper option. With the study and implementation as per above, the fields able to prolong its production until the end of Production Sharing Contract (PSC). This proactive approach has maintained the fields’ production with The paper seeks to present on the challenges, root cause analysis and the lessons learned from the subsequent improvement activities. The lessons learned will be applicable to oil fields with similar situations to further improve the fields’ production.


2010 ◽  
Vol 3 (1) ◽  
Author(s):  
Lizzy Bleumers ◽  
Kris Naessens ◽  
An Jacobs

This article introduces Proxy Technology Assessment (PTA) as a methodological approach that can widen the scope of virtual world and game research. Studies of how people experience virtual worlds and games often focus on individual in-world or in-game experiences. However, people do not perceive these worlds and games in isolation. They are embedded within a social context that has strongly intertwined online and offline components. Studying virtual experiences while accounting for these interconnections calls for new methodological approaches. PTA answers this call.Combining several methods, PTA can be used to investigate how new technology may impact and settle within people's everyday life (Pierson et al., 2006). It involves introducing related devices or applications, available today, to users in their natural setting and studying the context-embedded practices they alter or evoke. This allows researchers to detect social and functional requirements to improve the design of new technologies. These requirements, like the practices under investigation, do not stop at the outlines of a magic circle (cf. Huizinga, 1955).We will start this article by contextualizing and defining PTA. Next, we will describe the practical implementation of PTA. Each step of the procedure will be illustrated with examples and supplemented with lessons learned from two interdisciplinary scientific projects, Hi-Masquerade and Teleon, concerned with how people perceive and use virtual worlds and games respectively.


Author(s):  
Mark S. Denton ◽  
Josh Mertz

On March 11, 2011, now two years ago, the magnitude 9.0 Great East Japan earth quake, Tohoku, hit off the Fukushima coast of Japan. This was one of the most powerful earthquakes in recorded history and the most powerful one known to have hit Japan. The ensuing tsunami devastated a huge area resulting in some 25,000 persons confirmed dead or missing. The perfect storm was complete when the tsunami then found the four-reactor, Fukushima-Daiichi Nuclear Station directly in its destructive path. Some 2 million people were evacuated from a fifty mile radius of the area and evaluation and cleanup began. A tremendous effort has been made, by many nationalities, since this time to restore this damaged plant and surrounding area and to return a great deal of the residents to their homes and farm lands. While most of the outcome of this unprecedented natural and manmade disaster was negative, both in Japan and worldwide, there have been some extremely valuable lessons learned and new emergency recovery technologies and systems developed to cope with the aftermath of this disaster. This paper describes new technology developed to selectively remove radioactive materials dangerous to workers, local citizens, and the natural environment from seawater used to cool the damaged reactors at Fukushima. As always, the mother of invention is necessity.


Author(s):  
Julian Yamaura ◽  
Stephen T. Muench ◽  
Kim Willoughby

This paper presents a case study of the organizational change process associated with the Washington State Department of Transportation (WSDOT) year-long research program that implemented a cloud-based mobile project inspection application to 18 project engineering offices (PEO) across the state. Ultimately, four out of the 18 PEOs decided to adopt the new technology. Data from semi-structured interviews and a user study conducted two months after implementation are used to identify organizational change strategies used by WSDOT, and how those relate to ideas from the general literature on change management. The loss of upper management program leaders, inadequate communication and training to prepare personnel for the change, and policy and procedural uncertainties in integrating the change with other systems and operations were found to be factors that may have influenced the outcome of the program. While this paper focuses on one DOT’s efforts, other DOTs may have similar organizational structures and implementation efforts, and the findings and lessons learned could serve as a representative model for how such implementation might best be accomplished in a DOT and how that might differ from traditional change management guidance.


2021 ◽  
Vol 7 ◽  
Author(s):  
Josep Bassaganya-Riera ◽  
Elliot M. Berry ◽  
Ellen E. Blaak ◽  
Barbara Burlingame ◽  
Johannes le Coutre ◽  
...  

Five years ago, with the editorial board of Frontiers in Nutrition, we took a leap of faith to outline the Goals for Nutrition Science – the way we see it (1). Now, in 2020, we can put ourselves to the test and take a look back. Without a doubt we got it right with several of the key directions. To name a few, Sustainable Development Goals (SDGs) for Food and Nutrition are part of the global public agenda, and the SDGs contribute to the structuring of international science and research. Nutritional Science has become a critical element in strengthening work on the SDGs, and the development of appropriate methodologies is built on the groundwork of acquiring and analyzing big datasets. Investigation of the Human Microbiome is providing novel insight on the interrelationship between nutrition, the immune system and disease. Finally, with an advanced definition of the gut-brain-axis we are getting a glimpse into the potential for Nutrition and Brain Health. Various milestones have been achieved, and any look into the future will have to consider the lessons learned from Covid-19 and the sobering awareness about the frailty of our food systems in ensuring global food security. With a view into the coming 5 years from 2020 to 2025, the editorial board has taken a slightly different approach as compared to the previous Goals article. A mind map has been created to outline the key topics in nutrition science. Not surprisingly, when looking ahead, the majority of scientific investigation required will be in the areas of health and sustainability.Johannes le Coutre, Field Chief Editor, Frontiers in Nutrition.


2018 ◽  
Vol 58 (2) ◽  
pp. 565
Author(s):  
Angus Jaffray

To meet the twin objectives of limiting climate change and providing affordable energy to a growing and urbanised population, natural gas must adapt its role in a changing energy market and remain competitive with other sources of energy longer term. Santos is ensuring its role in this future by incorporating technology into its existing operations to improve energy efficiency, reduce operating costs and reduce emissions. The declining cost of new technology, historic production data and analytics create opportunities to improve efficiency in existing facilities. As new technologies such as variable renewable power generation increase their market penetration, the role of gas and the opportunities for gas producers are also changing. Santos is investigating several projects that incorporate new technology and leverage these market changes. These projects include: • conversion of existing operations to run partially or fully on renewable power to reduce fuel consumption, reduce emissions from Santos’ operations, improve reliability and make more product available to the market; • using predictive analytics to improve well performance; • using technology to improve logistics performance; and • leveraging Santos’ existing infrastructure footprint to develop commercial-scale gas, renewable and storage hybrid power projects.


2013 ◽  
Vol 53 (2) ◽  
pp. 491
Author(s):  
Paul Agar

With rising costs, a tight labour market, and prolonged global economic uncertainty, it is unsurprising that investment decisions are being re-evaluated across Australia's resources and energy industry. Amid this tough market environment, effective asset management has never been more important. Asset management was first adopted by Australia's oil and gas industry in the early 90s and is now well entrenched. There is widespread acknowledgement that it breaks down project complexity and plays a critical role in maximising project net present value. If done well, asset management takes a long-term view of asset life-cycles–from concept and creation, to services that deliver production assurance and lower costs. While these principles are well understood across the market, asset data capture and analysis–a critical element to successful asset management–requires ongoing review. Accurate and comprehensive asset data is the basis on which all good asset-management decisions are made. Developments in geographic information systems, SAP, and cloud-based technology are redefining the way asset data is collected, stored, analysed, and fed back into asset-management decisions. Asset managers of oil and gas assets should, therefore, be asking themselves three important questions: Are we using the latest technology to collect, store, and analyse asset data? Which project stakeholders need to interact with the data? Do our existing or planned asset-management models have the capacity to integrate and evolve with new technology as it develops?


AI Magazine ◽  
2017 ◽  
Vol 37 (4) ◽  
pp. 46-54 ◽  
Author(s):  
Jeremy D. Frank ◽  
Kerry McGuire ◽  
Haifa R. Moses ◽  
Jerri Stephenson

As NASA explores destinations beyond the Moon, the distance between Earth and spacecraft will increase communication delays between astronauts and Mission Control. Today, astronauts coordinate with Mission Control to request assistance and await approval to perform tasks. Many of these coordination tasks require multiple exchanges of information, (for example, taking turns). In the presence of long communication delays, the length of time between turns may lead to inefficiency, or increased mission risk. Future astronauts will need software-based decision aids to enable them to work autonomously from Mission Control. These tools require the right combination of mission operations functions, for example, automated planning and fault management, troubleshooting recommendations, easy to access information, and just-in-time training. Ensuring these elements are properly designed and integrated requires an integrated human factors approach. This article describes a recent demonstration of autonomous mission operations using a novel software-based decision aid onboard the International Space Station. We describe how this new technology changes the way astronauts coordinate with mission control, and how the lessons learned from these early demonstrations will enable the operational autonomy needed to ensure astronauts can safely journey to Mars, and beyond.


Sign in / Sign up

Export Citation Format

Share Document