Well Lifting Capability to a Green Power Generation Using Microturbine Generator

2021 ◽  
Author(s):  
Mohd Faizal Sedaralit ◽  
M Imran Iskandar Ibrahim ◽  
Azman Maam

Abstract A new way of utilizing access gas to power generation using newly developed technology named micro-turbine electric generator (mTEG). This technology is using relatively low gas flow rate: same region of gas-lift consumption between 0.3 – 0.5 MMscf/d of power generation for a minimum of one kilo Watt (1kW) per unit. The technology is classified under green category is due to no combustion process instead using pressure differential as the mechanism for power generation. Therefore, it supports PETRONAS’ net carbon zero program especially for unmanned platform operation. The mTEG is simple unit developed based on differential method by allowing gas to flow inside for rotation without combustion for power generation. Flow and pressure requirements are relatively low at 0.4 MMscf/d at 10 bar, respectively. One of gas supply sources to run the unit is coming from well or gas lift skid. Per skid of mTEG it can produce up-to 4 kW power. This technology helps to support unmanned platform operation to reduce operation cost and moreover, this technology is compact and superior than solar power scheme unit. Life cycle cost between the two technologies was indicated superior saving is possible for mTEG technology. Completed prototype model – integrated skid and in 2019 team managed secured full in-house development under prototyping and engineering centre unit located in PETRONAS Research Sdn. Bhd. (PRSB), Bangi. One of the technologies used to produce the mTEG unit is 3D printer with also available in PRSB. Passed factory acceptance test (FAT) in 2019 based on positive outcome of endurance test performance. Embarked detail engineering for installation of the skid and completed electrical and installation in 2020 and the skid unit is expecting to provide 1 kW power by end of this year at field E and upon completing the test, this technology will be able to benefits other operating unmanned platform or event small plant operation. The technology was designed for green power generation: operation greenification with no combustion elements instead provide flexibility for recycling of the gas and reuse for another means such as gas lift gas application to improved oil recovery.

Author(s):  
B.S. Soroka ◽  
V.V. Horupa

Natural gas NG consumption in industry and energy of Ukraine, in recent years falls down as a result of the crisis in the country’s economy, to a certain extent due to the introduction of renewable energy sources along with alternative technologies, while in the utility sector the consumption of fuel gas flow rate enhancing because of an increase the number of consumers. The natural gas is mostly using by domestic purpose for heating of premises and for cooking. These items of the gas utilization in Ukraine are already exceeding the NG consumption in industry. Cooking is proceeding directly in the living quarters, those usually do not meet the requirements of the Ukrainian norms DBN for the ventilation procedures. NG use in household gas stoves is of great importance from the standpoint of controlling the emissions of harmful components of combustion products along with maintenance the satisfactory energy efficiency characteristics of NG using. The main environment pollutants when burning the natural gas in gas stoves are including the nitrogen oxides NOx (to a greater extent — highly toxic NO2 component), carbon oxide CO, formaldehyde CH2O as well as hydrocarbons (unburned UHC and polyaromatic PAH). An overview of environmental documents to control CO and NOx emissions in comparison with the proper norms by USA, EU, Russian Federation, Australia and China, has been completed. The modern designs of the burners for gas stoves are considered along with defining the main characteristics: heat power, the natural gas flow rate, diameter of gas orifice, diameter and spacing the firing openings and other parameters. The modern physical and chemical principles of gas combustion by means of atmospheric ejection burners of gas cookers have been analyzed from the standpoints of combustion process stabilization and of ensuring the stability of flares. Among the factors of the firing process destabilization within the framework of analysis above mentioned, the following forms of unstable combustion/flame unstabilities have been considered: flashback, blow out or flame lifting, and the appearance of flame yellow tips. Bibl. 37, Fig. 11, Tab. 7.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3463
Author(s):  
Xueliang Yuan ◽  
Leping Chen ◽  
Xuerou Sheng ◽  
Mengyue Liu ◽  
Yue Xu ◽  
...  

Economic cost is decisive for the development of different power generation. Life cycle cost (LCC) is a useful tool in calculating the cost at all life stages of electricity generation. This study improves the levelized cost of electricity (LCOE) model as the LCC calculation methods from three aspects, including considering the quantification of external cost, expanding the compositions of internal cost, and discounting power generation. The improved LCOE model is applied to three representative kinds of power generation, namely, coal-fired, biomass, and wind power in China, in the base year 2015. The external cost is quantified based on the ReCiPe model and an economic value conversion factor system. Results show that the internal cost of coal-fired, biomass, and wind power are 0.049, 0.098, and 0.081 USD/kWh, separately. With the quantification of external cost, the LCCs of the three are 0.275, 0.249, and 0.081 USD/kWh, respectively. Sensitivity analysis is conducted on the discount rate and five cost factors, namely, the capital cost, raw material cost, operational and maintenance cost (O&M cost), other annual costs, and external costs. The results provide a quantitative reference for decision makings of electricity production and consumption.


2021 ◽  
Vol 11 (7) ◽  
pp. 2961
Author(s):  
Nikola Čajová Kantová ◽  
Alexander Čaja ◽  
Marek Patsch ◽  
Michal Holubčík ◽  
Peter Ďurčanský

With the combustion of solid fuels, emissions such as particulate matter are also formed, which have a negative impact on human health. Reducing their amount in the air can be achieved by optimizing the combustion process as well as the flue gas flow. This article aims to optimize the flue gas tract using separation baffles. This design can make it possible to capture particulate matter by using three baffles and prevent it from escaping into the air in the flue gas. The geometric parameters of the first baffle were changed twice more. The dependence of the flue gas flow on the baffles was first observed by computational fluid dynamics (CFD) simulations and subsequently verified by the particle imaging velocimetry (PIV) method. Based on the CFD results, the most effective is setting 1 with the same boundary conditions as those during experimental PIV measurements. Setting 2 can capture 1.8% less particles and setting 3 can capture 0.6% less particles than setting 1. Based on the stoichiometric calculations, it would be possible to capture up to 62.3% of the particles in setting 1. The velocities comparison obtained from CFD and PIV confirmed the supposed character of the turbulent flow with vortexes appearing in the flue gas tract, despite some inaccuracies.


2012 ◽  
Vol 199 (12) ◽  
pp. 1642-1651 ◽  
Author(s):  
Suttichai Assabumrungrat ◽  
Janewit Phromprasit ◽  
Siriporn Boonkrue ◽  
Worapon Kiatkittipong ◽  
Wisitsree Wiyaratn ◽  
...  

2013 ◽  
Vol 27 (6) ◽  
pp. 3438-3445 ◽  
Author(s):  
Christopher R. Shaddix ◽  
Ethan S. Hecht ◽  
William G. Houf ◽  
Charles K. Westbrook ◽  
Lynn Tessier ◽  
...  

2018 ◽  
Vol 2 (1) ◽  
pp. 32
Author(s):  
Mia Ferian Helmy

Gas lift is one of the artificial lift method that has mechanism to decrease the flowing pressure gradient in the pipe or relieving the fluid column inside the tubing by injecting amount of gas into the annulus between casing and tubing. The volume of  injected gas was inversely proportional to decreasing of  flowing  pressure gradient, the more volume of gas injected the smaller the pressure gradient. Increasing flowrate is expected by decreasing pressure gradient, but it does not always obtained when the well is in optimum condition. The increasing of flow rate will not occured even though the volume of injected gas is abundant. Therefore, the precisely design of gas lift included amount of cycle, gas injection volume and oil recovery estimation is needed. At the begining well AB-1 using artificial lift method that was continuos gas lift with PI value assumption about 0.5 STB/D/psi. Along with decreasing of production flow rate dan availability of the gas injection in brownfield, so this well must be analyze to determined the appropriate production method under current well condition. There are two types of gas lift method, continuous and intermittent gas lift. Each type of gas lift has different optimal condition to increase the production rate. The optimum conditions of continuous gaslift are high productivity 0.5 STB/D/psi and minimum production rate 100 BFPD. Otherwise, the intermittent gas lift has limitations PI and production rate which is lower than continuous gas lift.The results of the analysis are Well AB-1 has production rate gain amount 20.75 BFPD from 23 BFPD became 43.75 BFPD with injected gas volume 200 MSCFPD and total cycle 13 cycle/day. This intermittent gas lift design affected gas injection volume efficiency amount 32%.


2015 ◽  
Vol 4 (5) ◽  
pp. 341-345 ◽  
Author(s):  
L. R. Holanda ◽  
◽  
F. S. Ramos
Keyword(s):  

Author(s):  
Mohd Ahamad

A new concept in power generation is a microgrid. The Microgrid concept assumes a cluster of loads and microsources operating as a single controllable system that provides power to its local area. This concept provides a new paradigm for defining the operation of distributed generation. The microsources of special interest for MGs are small (<100-kW) units with power electronic interfaces. These sources are placed at customers sites. They are low cost, low voltage and have a high reliability with few emissions. Power electronics provide the control and flexibility required by the MG concept. A properly designed power electronics and controllers insure that the MG can meet the needs of its customers as well as the utilities. The goal of this project is to build a complete model of Microgrid including the power sources, their power electronics, and a load and mains model in THE HOMER. The HOMER Micropower Optimization Model is a computer model developed by the U.S. National Renewable Energy Laboratory (NREL) to assist in the design of micropower systems and to facilitate the comparison of power generation technologies across a wide range of applications. HOMER models a power system’s physical behavior and its life-cycle cost, which is the total cost of installing and operating the system over its life span. HOMER allows the modeler to compare many different design options based on their technical and economic merits. It also assists in understanding and quantifying the effects of uncertainty or changes in the inputs.


Sign in / Sign up

Export Citation Format

Share Document