Microgrid Model on Homer Software

Author(s):  
Mohd Ahamad

A new concept in power generation is a microgrid. The Microgrid concept assumes a cluster of loads and microsources operating as a single controllable system that provides power to its local area. This concept provides a new paradigm for defining the operation of distributed generation. The microsources of special interest for MGs are small (<100-kW) units with power electronic interfaces. These sources are placed at customers sites. They are low cost, low voltage and have a high reliability with few emissions. Power electronics provide the control and flexibility required by the MG concept. A properly designed power electronics and controllers insure that the MG can meet the needs of its customers as well as the utilities. The goal of this project is to build a complete model of Microgrid including the power sources, their power electronics, and a load and mains model in THE HOMER. The HOMER Micropower Optimization Model is a computer model developed by the U.S. National Renewable Energy Laboratory (NREL) to assist in the design of micropower systems and to facilitate the comparison of power generation technologies across a wide range of applications. HOMER models a power system’s physical behavior and its life-cycle cost, which is the total cost of installing and operating the system over its life span. HOMER allows the modeler to compare many different design options based on their technical and economic merits. It also assists in understanding and quantifying the effects of uncertainty or changes in the inputs.

2018 ◽  
Vol 7 (3.27) ◽  
pp. 339
Author(s):  
Riyaz A. Rahiman ◽  
M C. John Wiselin

This paper focuses on a solar PV array based BLDC motor employing Landsman converter under partial shading condition (PSC). A converter acts as an interface between the SPV array under PSC and Voltage Source Inverter (VSI) feeding the Brushless DC (BLDC) motor. BLDC motor incorporating the merits of higher efficiency, high reliability, high ruggedness, easy-to-drive, capability to operate successfully at low voltage and excellent performance over a wide range of speed. The speed control of BLDC motor by variable DC-link voltage. This eliminates the additional phase current sensing, DC-link voltage sensing, additional control and associated circuitry. The proposed system includes simplicity control, compactness, and soft starting of the BLDC motor. The operation of Landsman converter in CCM results reduced stress on devices.  To optimize the operating point of the SPV array in order to get maximum possible power output by means of the better maximum power point tracking (MPPT) technique. The technique is Bumble Bee Mating Optimization (BBMO) based MPPT. The novel technique is compared to the conventional techniques. The simulated results are executed in MATLAB/SIMULINK.


2013 ◽  
Vol 468 ◽  
pp. 141-144
Author(s):  
Su Hua Chen ◽  
Yong Guang Liu ◽  
Xu Fang

Smart home system mainly consists of home networking, wireless local area network and external network, and with the advantages of low cost and high reliability, Zigbee wireless technology is the right choice for smart home system and the main part of home networking. The design of smart home system based on Zigbee is proposed, the Zigbeethe design process of the systemintelligent socket and data communication rule are elaborated. The system has been applied in smart community of Shaoxing Electric Power Bureau, which has good performances, high availability and reliability, better market prospects.


2013 ◽  
Vol 448-453 ◽  
pp. 1767-1772
Author(s):  
Xiong Feng He ◽  
Xian Yun Li ◽  
Tong Zhou Ji ◽  
Hao Peng ◽  
Kun Liu

For enhancing low voltage ride though (LVRT) capability, this paper proposes a new protection scheme of series dynamic breaking resistor (SDBR) connected to the grid-side inverter (GSI) of directly driven permanent magnet synchronous generator (D-PMSG) wind power system, which has a lot of advantages such as possessing low cost, simple structure and high reliability. The structure, switching control strategy and matched resistance of SDBR are researched. The proposed scheme was then applied to uplift GSI voltage during a fault, maintain active power delivered to grid, inhibit DC-link overvoltage and GSI overcurrent. The simulation analysis shows that the SDBR can substantially improve the LVRT capacity of D-PMSG wind power system in PSCAD/EMTDC.


MRS Bulletin ◽  
1997 ◽  
Vol 22 (11) ◽  
pp. 69-72 ◽  
Author(s):  
K.F. Kelton ◽  
P.C. Gibbons

Quasicrystals may have important applications as new technological materials. In particular, work in our laboratory has shown that some quasicrystals may be useful as hydrogen-storage materials.Some transition metals have a capacity to store hydrogen to a density exceeding that of liquid hydrogen. Such systems allow for basic investigations of solid-state phenomena such as phase transitions, atomic diffusion, and electronic structure. They may also be critical materials for the future energy economy. The depletion of the world's petroleum reserves and the increased environmental impact of conventional combustion-engine powered automobiles are leading to renewed interest in hydrogen. TiFe hydrides have already been used as storage tanks for stationary nonpolluting hydrogen internal-combustion engines. Nickel metal-hydride batteries are commonly used in a wide range of applications, most notably as power sources for portable electronic devices—particularly computers. The light weight and low cost of titanium-transition-metal alloys offer significant advantages for such applications. Unfortunately they tend to form stable hydrides, which prevents the ready desorption of the stored hydrogen for the intended use.Some titanium/zirconium quasicrystals have a larger capacity for reversible hydrogen storage than do competing crystalline materials. Hydrogen can be loaded from the gas phase at temperatures as low as room temperature and from an electrolytic solution. The hydrogen goes into solution in the quasicrystal structure, often avoiding completely the formation of undesirable crystalline hydride phases. The proven ability to reversibly store variable quantities of hydrogen in a quasicrystal not only points to important areas of application but also opens the door to previously inaccessible information about the structure and dynamics of this novel phase. Selected results illustrating these points appear briefly here.


Author(s):  
Bolarinwa H.S. ◽  
Fajingbesi F.E. ◽  
Yusuf A. ◽  
Animasahun L. O. ◽  
Babatunde Y. O.

A high voltage power supply is a key component in the advancement of science and technology. Application of high voltage power supply requires careful attention to critical variables such as voltage ripple, long and shortterm stability, repeatability and accuracy. These are important factors in the consideration of reliable scientific data. This paper presents the design of a low-cost high voltage power supply from the off-the-shelf electronics components to meet the high-end requirement of high voltage power supply. A 30kV, 63.8mA maximum power supply was constructed at the Fountain University electronics workshop. This high voltage directs current (HVDC) power supply was built around three basic compartments that include an adjustable low voltage power supply (LVPS), a high frequency oscillator, and a line output transformer (LOPT) using flyback transformer, NE555timer, BU508D BJT, and other off-the-shelf components. The current-voltage relationship at the output of the constructed High Voltage Direct Current was found to be linear. This power source will serve any high DC voltage applications such as electrospinning. The constructed 30kV power supply has been tested in the electrospinning laboratory of the Center for Energy Research and Development (CERD) Obafemi Awolowo University (OAU) Ile-Ife. The unit successfully electrospun Zinc-Titaninm polymeric solution into fibers at about 8 kV. The importance of this fabricated device is its high reliability despite its low cost and capability to produce different magnitude of high voltage DC.


2017 ◽  
Author(s):  
Haripriya Mukundarajan ◽  
Felix J H Hol ◽  
Erica A Castillo ◽  
Cooper Newby ◽  
Manu Prakash

AbstractThe direct monitoring of mosquito populations in field settings is a crucial input for shaping appropriate and timely control measures for mosquito-borne diseases. Here, we demonstrate that commercially available mobile phones are a powerful tool for acoustically mapping mosquito species distributions worldwide. We show that even low-cost mobile phones with very basic functionality are capable of sensitively acquiring acoustic data on species-specific mosquito wingbeat sounds, while simultaneously recording the time and location of the human-mosquito encounter. We survey a wide range of medically important mosquito species, to quantitatively demonstrate how acoustic recordings supported by spatio-temporal metadata enable rapid, non-invasive species identification. As proof-of-concept, we carry out field demonstrations where minimally-trained users map local mosquitoes using their personal phones. Thus, we establish a new paradigm for mosquito surveillance that takes advantage of the existing global mobile network infrastructure, to enable continuous and large-scale data acquisition in resource-constrained areas.


2016 ◽  
Vol 13 (2) ◽  
pp. 103
Author(s):  
L. Ramesh ◽  
Umamageswari Umamageswari

A primary and necessary focus in creating a greener environment is the conversion of existing power-generation sources to renewable power sources in the near future. Another important focus is to develop sustainable household power generation to a low-voltage electricity grid with a power purchase and selling facility. To help with achieving the above vision, the objective of this work is to critically analyze the existing low-voltage distribution system and make suggestions for restructuring it to the low-voltage interconnected microgrid (MG). The test was carried out in the Tamil Nadu Electricity Board (TNEB) 100kVA transformer feeder which was connected to supply around 100 houses with electricity. The performance analysis of the proposed system was examined through different case studies, represented as a normal operating condition of the existing distribution system and a reconstructed and interconnected MG to the TNEB grid. The project was designed and analyzed using PSCAD software. The results discussed in the project are helpful in examining the effects of multiple distributed energy resources on distributed generation. In future, knowledge of these effects may be helpful for rural area electrification. 


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1719 ◽  
Author(s):  
Sanja P. Kojic ◽  
Goran M. Stojanovic ◽  
Vasa Radonic

Microfluidics, one of the most attractive and fastest developed areas of modern science and technology, has found a number of applications in medicine, biology and chemistry. To address advanced designing challenges of the microfluidic devices, the research is mainly focused on development of efficient, low-cost and rapid fabrication technology with the wide range of applications. For the first time, this paper presents fabrication of microfluidic chips using hybrid fabrication technology—a grouping of the PVC (polyvinyl chloride) foils and the LTCC (Low Temperature Co-fired Ceramics) Ceram Tape using a combination of a cost-effective xurography technique and a laser micromachining process. Optical and dielectric properties were determined for the fabricated microfluidic chips. A mechanical characterization of the Ceram Tape, as a middle layer in its non-baked condition, has been performed and Young’s modulus and hardness were determined. The obtained results confirm a good potential of the proposed technology for rapid fabrication of low-cost microfluidic chips with high reliability and reproducibility. The conducted microfluidic tests demonstrated that presented microfluidic chips can resist 3000 times higher flow rates than the chips manufactured using standard xurography technique.


2012 ◽  
Vol 229-231 ◽  
pp. 1110-1114
Author(s):  
Fan Bo Meng ◽  
Hong Hao Zhao ◽  
Jie Wang

As a new kind of optical cable with high energy efficiency, low cost and high reliability, optical phase conductor (OPPC) cable has received widely concern in the industry area. In this paper, we consider the practical experience from the projects and take 10kV and 66kV circuit as examples. We analyze and discuss the important and difficult issues and problems of OPPC cable in design, construction and operation based on the requirement and circumstance of low voltage power grid communication network. After that, we provide a feasible and effective solution for low voltage grid of fiber optic coverage.


2021 ◽  
Vol 12 (1) ◽  
pp. 43
Author(s):  
Hasaan Farooq ◽  
Hassan Abdullah Khalid ◽  
Waleed Ali ◽  
Ismail Shahid

With the expansion of renewable energy sources worldwide, the need for developing more economical and more efficient converters that can operate on a high frequency with minimal switching and conduction losses has been increased. In power electronic converters, achieving high efficiency is one of the most challenging targets to achieve. The utilization of wideband switches can achieve this goal but add additional cost to the system. LLC resonant converters are widely used in different applications of renewable energy systems, i.e., PV, wind, hydro and geothermal, etc. This type of converter has more benefits than the other converters such as high electrical isolation, high power density, low EMI, and high efficiency. In this paper, a comparison between silicon carbide (SiC) MOSFET and silicon (Si) MOSFET switches was made, by considering a 3KW half-bridge LLC converter with a wide range of input voltage. The switching losses and conduction losses were analyzed through mathematical calculations, and their authenticity was validated with the help of software simulations in PSIM. The results show that silicon carbide (SiC) MOSFETs can work more efficiently, as compared with silicon (Si) MOSFETs in high-frequency power applications. However, in low-voltage and low-power applications, Si MOSFETs are still preferable due to their low-cost advantage.


Sign in / Sign up

Export Citation Format

Share Document