Successful Deployment of Metal Expandable Technology with Inner String Stage Cementing System Overcomes Well Construction Challenges in Bab Field, UAE

2021 ◽  
Author(s):  
Peter Levison Mwansa ◽  
Esha Narendra Varma ◽  
Victor Jose Aguilar ◽  
Alexander Amorocho ◽  
Daniel McPherson ◽  
...  

Abstract Inability to effectively isolate depleted aquifer formations due to severe losses during cementation leads to accelerated corrosion of the production casing. Per current practice, a top job is performed from surface to fill the annulus with cement, but with limited success in a severe losses’ scenario. The objective is to improve zonal isolation by applying V0 rated multiple stage cementation technology with inner string thus enhancing well integrity during the life cycle of the well. A metal expandable annular sealing system was selected as a reliable isolation mechanism for effective cementation behind aquifers due to its ability to provide high expansion in potentially washed-out wellbores and the feature of long multi-element sealing systems with built in redundancy. The inner string operated stage cementing system provides a reliable solution to selectively and accurately place cement above the metal expandable packer whilst maintaining V0 casing integrity once closed. Additionally, the unique combination of technologies provides a cost-effective life of well solution compared to current stage cementing methodologies. Following successful execution of three trial jobs, the multi-stage cement using V0 rated tools and an inner string was compared to similar jobs done per current cementing practices. Analysis involved reviewing the cement bond column coverage and quality (CBL) with offset wells. Cement bond log results showed that this technique enhanced the cement column quality behind the 9 5/8" casing across the aquifer zones with moderate to good cement for the most part. Contaminated cement was observed just below the previous casing shoe and this could be addressed by adding another stage tool just above the previous casing shoe. Overall results show improved cement column quality for this section when compared to conventional jobs with similar conditions and is recommended for future use in severe to total losses scenario. In a situation where losses are seen at the previous casing shoe, a three-stage job is recommended. Other benefits include: Security and confidence in gas tight sealing capability and mechanical integrity Precise and conclusive operation for open, close and lock with no risk of accidental lock Ability to squeeze cement below the metal expandable packer No reduction in pressure rating regardless of OH ID and full bore ID of casing No post operation drill out required of the stage tools V0 stage cementing tools with inner string and metal expandable annular sealing system are not available on Oil & Gas market as a single tool. Therefore, this combined technology application of solutions from different technology providers to access a dedicated solution is totally novel and creates an opportunity for future applications across the industry.

2021 ◽  
Author(s):  
Ebikebena M. Ombe ◽  
Ernesto G. Gomez ◽  
Aldia Syamsudhuha ◽  
Abdullah M. AlKwiter

Abstract This paper discusses the successful deployment of Multi-stage Fracturing (MSF) completions, composed of novel expandable steel packers, in high pressure, high temperature (HP/HT) horizontal gas wells. The 5-7/8" horizontal sections of these wells were drilled in high pressure, high temperature gas bearing formations. There were also washed-outs & high "dog-legs" along their wellbores, due to constant geo-steering required to keep the laterals within the hydrocarbon bearing zones. These factors introduced challenges to deploying the conventional MSF completion in these laterals. Due to the delicate nature of their packer elastomers and their susceptibility to degradation at high temperature, these conventional MSF completions could not be run in such hostile down-hole conditions without the risk of damage or getting stuck off-bottom. This paper describes the deployment of a novel expandable steel packer MSF completion in these tough down-hole conditions. These expandable steel packers could overcome the challenges mentioned above due to the following unique features: High temperature durability. Enhanced ruggedness which gave them the ability to be rotated & reciprocated during without risk of damage. Reduced packer outer diameter (OD) of 5.500" as compared to the 5.625" OD of conventional elastomer MSF packers. Enhanced flexibility which enabled them to be deployed in wellbores with high dog-leg severity (DLS). With the ability to rotate & reciprocate them while running-in-hole (RIH), coupled with their higher annular clearance & tolerance of high temperature, the expandable steel packers were key to overcoming the risk of damaging or getting stuck with the MSF completion while RIH. Also, due to the higher setting pressure of the expandable steel packers when compared to conventional elastomer packers, there was a reduced risk of prematurely setting the packers if high circulating pressure were encountered during deployment. Another notable advantage of these expandable packers is that they provided an optimization opportunity to reduce the number of packers required in the MSF completion. In a conventional MSF completion, two elastomer packers are usually required to ensure optimum zonal isolation between each MSF stage. However, due to their superior sealing capability, only one expandable steel packer is required to ensure good inter-stage isolation. This greatly reduces the number of packers required in the MSF completion, thereby reducing its stiffness & ultimately reducing the probability of getting stuck while RIH. The results of using these expandable steel packers is the successful deployment of the MSF completions in these harsh down-hole conditions, elimination of non-productive time associated with stuck or damaged MSF completion as well as the safe & cost-effective completion in these critical horizontal gas wells.


Author(s):  
Priyanka Aggarwal ◽  
Barjinder Singh Sohal ◽  
J. P. Goyal

<p><strong>Background:</strong> To compare the results of endoscopic tympanoplasty with that of conventional tympanoplasty and to evaluate and compare the graft uptake in both of these methods. The study was done to evaluate the improvement in hearing after tympanoplasty and the problems faced while doing the endoscope assisted tympanoplasty.</p><p><strong>Methods: </strong>Between July 2010 to June 2013, 50 patients underwent tympanoplasty, 25 were endoscope assisted (group A) and 25 were microscope assisted (group B). Results of surgery were compared at the end of three and six months post operation.</p><p><strong>Results: </strong>The success rate in terms of graft uptake rate was 88% with endoscope assisted tympanoplasty and 84% with other microscope assisted tympanoplasty. Overall success rate was 86.0%. Mean hearing improvement was (16.24±10.21 dB) and (14.28±7.10 dB) in group A and group B respectively.</p><p><strong>Conclusions: </strong>Tympanoplasty with its visualization of hidden corners, justifies tympanoplasty by using endoscope in selected cases with comparable improved results in the literature. Furthermore, the cost of the endoscope is much less (about 10%) in comparision to operating microscope, making it more cost effective in developing countries. However, the endoscope cannot be employed in every case as one hand is blocked. In terms of Patient comfort, the endoscope assisted outnumbers the benefits of other conventional methods.<strong></strong></p>


2021 ◽  
Author(s):  
Kuswanto Kuswanto ◽  
Oka Fabian ◽  
Orient B Samuel ◽  
Mohd Yuzmanizeil B Yaakub ◽  
Chua Hing Leong ◽  
...  

Abstract The B Field is located in the South China Sea, about 45 KM offshore Sarawak, Malaysia, in a water depth approximately 230 ft. Its structure is generally regarded as a gentle rollover anticline with collapsed crest resulting from growth faulting. The reservoirs were deposited in a coastal to shallow marine with some channels observed. Multiple stacked reservoirs consist of a series of very thick stacked alternating sandstone and minor shale layers with differing reservoir properties. The shallow zones are unconsolidated, and the wells were completed with internal gravel packs. Wells in B Field mostly were completed in multi-layered reservoirs as dual strings with SSDs and meant to produce as a commingled production. The well BX is located within B Field and designed as oil producer well with a conventional tubing jointedElectrical Submersible Pump (ESP) system which was installed back in 2008. Refer to figure 1, the initial completion schematic is 3-1/2″ single string that consist of the single production packer, gas lift mandrel, tubing retrievable Surface Controlled Subsurface Safety Valve (SCSSV) and ESP. The production packers equipped with the feed thru design to accommodate the ESP cable and the gas vent valve as part of the ESP completion design. The gas lift mandrel was installed in the completion string as a backup artificial lift method to receive the gas lift and orifice valve in the event of the conventional ESP failed. Hence the well still able to produce by introducing the gas thru the annulus to activate the gas lift valve. Eventually throughout the end of the the field life, the well would depend on the ESP system for the primary lifting method due to gas lift depth limitation and the gas supply. The conventional ESP failed after seven years of operation which is above the average ESP lifetime. The well last produced at a flow rate with 28 % water cut, however the well is not at the end of the field life. Based on the economical study with the right technology and cost efficient approach, the well still economicaly profitable. The Thru Tubing (TT) ESP technology is approached as cost effective solution compare to fully well workover. Despite a couple of operational challenges, for example, setting the cable hanger, maintaining downhole barrier requirement, the Thru Tubing Electrical Submersible Pump Cable Deployed (TTESP CD) and Cable Thru Insert Safety Valve (CT-ISV) was successfully installed. Several post-installation findings have uncovered some problems which are requiring some additional technical and operation improvement for future similar applications. This paper will highlight the deployment of the Cable Thru Insert Safety Valve (CT-ISV) that was successfully installed as pilot, which is the first application in the world, and also highlights the success, lesson learnt and improvement for future requirement for the CT-ISV application as one of the solution for retrofitting completion application without jeopardizing the well integrity. This achievement is collaboration between Company and service partner as the technology and deployment under the proprietary scope. Further technology application, the replication of this insert safety valve was conducted and successfully deployed on other three wells.


2021 ◽  
Author(s):  
Ravi Ramniklal Gondalia ◽  
Amit Sharma ◽  
Abhishek Shende ◽  
Amay Kumar Jha ◽  
Dinesh Choudhary ◽  
...  

Abstract From 2005 to 2020, the application of hydraulic fracturing technology in India has touched the length and breadth of the country in almost every basin and reservoir section. The variety of reservoirs and operating environment present in India governed this evolution over the past 15 years resulting in a different fit for purpose fracturing strategy for each basin varying from conventional single-stage fracturing (urban, desert & remote forested regions) to high volume multi-stage fracturing, deepwater frac-packs and offshore ultra-HPHT fracturing. The objective of this paper is to present the milestones along this evolution journey for hydraulic fracturing treatments in India from 2005 to 2020. This paper begins with a review of published industry literature from 2005 to 2020 categorized by reservoir type and the proven economical techno-operational fracturing strategy adopted during that period. The milestones are covered chronologically since the success or failure of technology application in one basin often influenced the adoption of novel hydraulic fracturing methods in other basins or by other operators during the initial years. The offshore evolution is branched between the west and the east coasts which have distinctly different journeys and challenges. The onshore evolution is split into 5 categories: Cambay onshoreBarmer Hills & Tight GasEast India CBM and shale gasAssam-Arakan BasinOnshore KG Basin Each of these regions is at different stages of evolution. The Barmer region is in the most advanced state of evolution with frac factories in place while the Assam-Arakan Basin is in a relatively nascent stage. Figure 1 presents estimated hydraulic stage count based on published literature underlining the exponential growth in hydraulic fracturing activity in India. This paper enlists the technical and operational challenges present in the onshore and offshore categories mentioned above along with the identified novel techno-operational strategies which have proven to be successful for various operators in India. A comparison is presented of the different timelines of the exploration-appraisal-development journey for each region based on the economic viability of fracturing solutions available today in the Industry. Lastly, specific non-technical challenges related to available infrastructure, logistics and social governance are discussed for each region. This paper concludes by identifying the next step-change in the evolution of hydraulic fracturing operations in India among the 5 categories. Each of Government, operators and service providers have important roles to play in expanding the adoption of this technology in India. These roles are discussed for each identified category with the perspective of continuing the country's journey towards energy security.


2020 ◽  
Vol 29 (8) ◽  
pp. S28-S33
Author(s):  
Andrew Barton

The use of sutureless, adhesive securement devices in vascular access has become recommended as best practice, because they are a cost-effective, reliable solution. After a vascular access device has been inserted, catheter securement is one of the most important aspects of care and maintenance. The Grip-Lok® range offers secure, comfortable adhesive securement for all types of vascular access devices. The products use hypoallergenic medical adhesive, which reduces the risk of skin irritation and provides a reliable, adaptable alternative to suturing.


Biomimetics ◽  
2019 ◽  
Vol 4 (4) ◽  
pp. 78
Author(s):  
Lin Chen ◽  
Ran Wei ◽  
Songbo Wei ◽  
Xinzhong Wang

The dissolvable bridge plug is one of the most important tools for multi-stage hydraulic fracturing in the field of oil/gas development. The plug provides zonal isolation to realize staged stimulation and, after fracturing, the plug is fully dissolved in produced liquids. A bionic surface was introduced to improve the performance of the plug. Surface dimples in the micron dimension were prepared on the dissolvable materials of the plug. The experimental results showed that the surface dimples changed the hydrophilic and hydrophobic properties of the dissolvable materials. The dissolution rate has a great relation with the parameters of the dimples and can be controlled by choosing the dimples’ parameters to some degree.


2014 ◽  
Vol 54 (2) ◽  
pp. 540
Author(s):  
Gregor Couper ◽  
Sina Roshan-Zamir ◽  
John Rickman ◽  
Chris Lee

Tie-backs to existing facilities are a long established method of expanding developments, as they often offer a cost-effective solution. For short length tie-backs located in regions that are remote and/or subject to severe weather conditions, however, the feasibility of installation can become a significant constraint. Factors such as high mobilisation cost of pipelay vessels and conditions that make pipeline towing impractical limit the potential design solutions. Defining these constraints early in the project is critical to successful execution. This extended abstract explores the challenges faced when developing such a tie-back by considering a case study of Origin Energy’s Geographe development, located in the Otway Basin. The location and harsh weather conditions constrained the viable installation options, which shaped the design. A flexible flowline was selected because it could be installed from a wider range of vessels and in a less limiting weather window. Subsea coolers are located at the wells for control of top of line (TOL) corrosion and to protect the flexible flowline from exposure to overly high temperatures. The cooler design brings its own challenges, requiring a two-stage process. First, modelling of the production fluid is used to determine the cooling requirements; then, CFD is used to design the cooler piping and structure to achieve this. A design with multiple, smaller structures was used to maximise the number of capable installation vessels. This extended abstract discusses the constraints that can occur, how the design must accommodate them, and the implications on execution of the project.


2015 ◽  
Vol 55 (1) ◽  
pp. 113
Author(s):  
Louise Goldie Divko

Australian state and territory acreage opportunities and recent activities are summarised in this paper. Exploration opportunities continue to exist for petroleum explorers in onshore basins, including a number of sedimentary basins that have previously largely been overlooked, with an increased focus (and commercial success) on basin centred gas, tight gas and shale gas plays. Access to onshore acreage in Australia for petroleum exploration is, in most jurisdictions, by means of a formal release process with a work program bidding system. Over-the-counter applications are available in some states based on perceived basin prospectivity. Australian state and territory governments continue initiatives to encourage exploration to realise their natural resource endowments. This includes pre-competitive basin studies, cost-effective and speedy provision of digital exploration data, transparent regulatory regimes, provision of effective land access regimes, internationally competitive royalty regimes, and promotion of acreage releases nationally and internationally.


Author(s):  
Marvin J. Cohn ◽  
Jordan W. Norton

There have been several feedwater piping and heater shell failures in power plants caused by flow-accelerated corrosion (FAC). This failure mechanism may be one of the most important types of damage to find proactively because FAC damage has occasionally resulted in catastrophic failures and human fatalities. Predicting, detecting, and resolving significant FAC damage can significantly reduce future forced outages and increase personnel safety. This paper describes the implementation of recent developments to perform cost-effective FAC examinations. These advances include the use of specialized pulsed eddy current (PEC) hardware and software to scan for wall thinning without removing insulation. Recent results are based on the current version, MK II, of this equipment. The authors have performed more than 200 power plant projects with this PEC equipment, examining numerous pipes and shells. This work consists of more than 70 projects of wall loss examinations for the nuclear industry, including examinations of feedwater heater shells inside the condenser. Results of wall loss measurements regarding PEC average wall thickness (AWT) measurements, ultrasonic thickness examinations (UTTH), and the PEC evaluated Defect Algorithm are compared in this study.


Author(s):  
Tejashwini N. ◽  
D. R. Shashi Kumar ◽  
K. Satyanarayana Reddy

Security is the rising concern of the wireless network as there are various forms of reonfigurable network that is arised from it. Wireless sensor network (WSN) is one such example that is found to be an integral part of cyber-physical system in upcoming times. After reviewing the existing system, it can be seen that there are less dominant and robust solutions towards mitigating the threats of upcoming applications of WSN. Therefore, this paper introduces a simple and cost-effective modelling of a security system that offers security by ensuring secure selection of clusterhead during the data aggregation process in WSN. The proposed system also makes construct a rule-set in order to learn the nature of the communication iin order to have a discrete knowledge about the intensity of adversaries. With an aid of simulation-based approach over MEMSIC nodes, the proposed system was proven to offer reduced energy consumption with good data delivery performance in contrast to existing approach.


Sign in / Sign up

Export Citation Format

Share Document