Introducing New 22? PDC Bit for Drilling Complex Shallow Sections in a Giant Field in the Middle East

2021 ◽  
Author(s):  
Nata Miranda Franco ◽  
Alexandre Jean Robert Javay ◽  
Mohamed Essam Abdelmoneim Al Moselhy ◽  
Mahmoud Mohamed Osama Mohamed Saeifeldin ElAssy

Abstract Drilling a 22″ section across interbedded, high-impact, and abrasive formations has historically been challenging in giant fields in the Middle East. The section typically ranges from 3,000 ft to 4,000 ft long and requires three to four runs to reach the casing point with conventional TCI bits. This paper covers the introduction of a new 22″ PDC bit design run on rotary assembly, which has spectacularly improved the drilling performance over the conventional tricone bits. The introduction of this new 22″ PDC bit design followed a comprehensive engineering approach. Starting with the simulation of rock properties such as compressive strength, abrasiveness, and impact, a fit-for-purpose bit design was manufactured to address the needed cutting structure, number of blades, and depth of cut for the section. The downhole drilling dynamics were also thoroughly analyzed, and the bottom hole assembly configuration was revisited to match up with the new bit structure. Within the dedicated continuous improvement workflow set by the service company, the bit pattern was further optimized after the initial field trials. After an in-depth analysis of the various formation properties and their impact on bit life, the 22″ section was divided into two target runs. The upper part has high-impact and interbedded layers, and the lower part has high abrasiveness and formation compressive strength. In the upper part, the TCI bits had previously shown relatively good performance with acceptable ROP, while the PDC bits experienced damage to their cutting structure. As the impacts were lower in the bottom part, the PDC bit design was selected for the second run to the casing point, which resulted in significantly higher ROP and a longer lifetime than the TCI runs. The 2-bit strategy, spudding the section with the TCI bit and completing it with the PDC bit on rotary assembly, translated into a significant improvement of ROP by 32%. In addition to saving rig time, the overall number of bit runs was reduced by 29%, resulting in cost savings by using fewer bits. Drilling the section in two runs has now become the norm, and this winning strategy was adopted as the new standard for drilling the 22″ hole section. The introduction of the 22″ PDC bit on rotary drive returned excellent results and record-breaking ROP performance. While the 22″ PDC cost might seem prohibitive, the substantial rig time savings proved this solution to be very economical. Further development of this initiative to other basins in the Middle East or elsewhere will mutually benefit both the operator and service company.

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Ahmad N. Abou Tayoun ◽  
Heidi L. Rehm

AbstractWe highlight the current lack of representation of the Middle East from large genomic studies and emphasize the expected high impact of cataloging its variation. We discuss the limiting factors and possible solutions to generating and accessing research and clinical sequencing data from this part of the world.


2021 ◽  
Author(s):  
Andrey Alexandrovich Rebrikov ◽  
Anton Anatolyevich Koschenkov ◽  
Anastasiya Gennadievna Rakina ◽  
Igor Dmitrievich Kortunov ◽  
Nikita Vladimirovich Koshelev ◽  
...  

Abstract Currently, production and exploration drilling has entered a stage of development where one of the highest priority goals is to reduce the time for well construction with new technologies and innovations. One of the key components in this aspect is the utilizing of the latest achievements in the design and manufacture of rock cutting tools – drill bits. This article presents some new ideas on methods for identifying different types of vibrations when drilling with PDC bits using a system of sensors installed directly into the bit itself. In the oil and gas fields of Eastern Siberia, one of the main reasons for ineffective drilling with PDC bits are vibrations, which lead to premature wear of the cutting structure of the bit and the achievement of low ROPs in the dolomite and dolerite intervals. For efficient drilling of wells of various trajectories with a bottom hole assembly (BHA), including a downhole motor (PDM) and a PDC bit, special attention is paid to control of the bit by limiting the depth of cut, as well as the level of vibrations that occur during drilling process. Often, the existing complex of surface and BHA equipment fails to identify vibrations that occur directly on the bit, as well as to establish the true cause of their occurrence. Therefore, as an innovative solution to this problem, a system of sensors installed directly into the bit itself is proposed. The use of such a system makes it possible to determine the drilling parameters, differentiated depending on the lithological properties of rocks, leading to an increase in vibration impact. Together with the Operators, tests have been successfully carried out, which have proven the effectiveness of the application of this technology. The data obtained during the field tests made it possible to determine the type and source of vibration very accurately during drilling. In turn, this made it possible to precisely adjust the drilling parameters according to the drilled rocks, to draw up a detailed road map of effective drilling in a specific interval. Correction of drilling parameters based on the analysis of data obtained from sensors installed in the bit made it possible to reduce the resulting wear of the PDC bit cutting structure and, if necessary, make changes to the bit design to improve the technical and economic indicators. Thus, the use of a system of sensors for measuring the drilling parameters in a bit ensured the dynamic stability of the entire BHA at the bottomhole when drilling in rocks of different hardness, significantly reduced the wear of the drilling tools and qualitatively improved the drilling performance.


1993 ◽  
Vol 115 (4) ◽  
pp. 247-256 ◽  
Author(s):  
A. K. Wojtanowicz ◽  
E. Kuru

An analytical development of a new mechanistic drilling model for polycrystalline diamond compact (PDC) bits is presented. The derivation accounts for static balance of forces acting on a single PDC cutter and is based on assumed similarity between bit and cutter. The model is fully explicit with physical meanings given to all constants and functions. Three equations constitute the mathematical model: torque, drilling rate, and bit life. The equations comprise cutter’s geometry, rock properties drilling parameters, and four empirical constants. The constants are used to match the model to a PDC drilling process. Also presented are qualitative and predictive verifications of the model. Qualitative verification shows that the model’s response to drilling process variables is similar to the behavior of full-size PDC bits. However, accuracy of the model’s predictions of PDC bit performance is limited primarily by imprecision of bit-dull evaluation. The verification study is based upon the reported laboratory drilling and field drilling tests as well as field data collected by the authors.


Author(s):  
Sheng Huang ◽  
Kaiwen Xia ◽  
Feng Dai

AbstractStatic Mohr–Coulomb Failure Criterion for rocks has been used extensively in various rock engineering applications. In this model, the compressive strength, tensile strength, and shear strength are related. To investigate the applicability of the Mohr–Coulomb model to dynamic failures, we studied the correlation of the three dynamic rock properties: compressive strength, tensile strength and punch shear strength. The strengths are quantified using a split Hopkinson pressure bar (SHPB) system. The methods for acquiring these strengths were briefly discussed. A fine-grained sandstone, Longyou sandstone (LS) was studied using these methods. The results showed that the compressive strength calculated from the punch shear strength of LS matched well with the experimental UCS results, thus the punch shear strength could be effectively used to predict the UCS of rocks. The tensile strength calculated from the punch shear strength of LS also has exhibited a good trend with the experimental results of Brazilian tensile strength. We concluded that the famous Mohr–Coulomb criterion can be extended to the dynamic range. However, caution has to be taken in determining the loading rates for different strength results.


2014 ◽  
Vol 14 (01) ◽  
pp. 1550006 ◽  
Author(s):  
M. S. Delibalta ◽  
S. Kahraman ◽  
R. Comakli

Because the indirect tests are easier and cheaper than the direct tests, the prediction of rock properties from the indirect testing methods is important especially for the preliminary investigations. In this study, the predictability of the physico-mechanical rock properties from the noise level measured during cutting rock with diamond saw was investigated. Noise measurement test, uniaxial compressive strength (UCS) test, Brazilian tensile strength (BTS) test, point load strength (Is) test, density test, and porosity test were carried out on 54 different rock types in the laboratory. The results were statistically analyzed to derive estimation equations. Strong correlations between the noise level and the mechanical rock properties were found. The relations follow power functions. Increasing rock strength increases the noise level. Density and porosity also correlated strongly with the noise level. The relations follow linear functions. Increasing density increases the noise level while increasing porosity decreases the noise level. The developed equations are valid for the rocks with a compressive strength below 150 MPa. Concluding remark is that the physico-mechanical rock properties can reliably be estimated from the noise level measured during cutting the rock with diamond saw.


2013 ◽  
Vol 824 ◽  
pp. 86-90 ◽  
Author(s):  
B. Adebayo ◽  
A.E. Aladejare

The effect of rock properties on excavation-loading operation in quarries was investigated by conducting test on the mechanical properties of selected rocks. These rock samples were tested in the laboratory for specific gravity, point load strength, uniaxial compressive strength and mineral composition using weigh balance, point load tester, 1100kN compression machine and petrological microscope respectively. The filling rates of the front end loaders bucket were determined. The result obtained show that value of uniaxial compressive strength varied from 29.22 MPa-30.87 MPa. The bucket filling rate varied from 0.180-0.250 m3/s and 0.145-0.170 m3/s for porphyritic biotite granite and coarse biotite granite respectively. There is strong relationship between bucket filling rate and strength properties with values of R2 ranging from 0.9737 to 0.9981.Therefore strength parameters of the rock have effect on excavation loading operation in quarries.


2021 ◽  
Author(s):  
Guodong David Zhan ◽  
Arturo Magana-Mora ◽  
Eric Moellendick ◽  
John Bomidi ◽  
Xu Huang ◽  
...  

Abstract This study presents a hybrid approach that combines data-driven and physics models for worn and sharp drilling simulation of polycrystalline diamond compact (PDC) bit designs and field learning from limited downhole drilling data, worn state measurements, formation properties, and operating environment. The physics models include a drilling response model for cutting forces, worn or rubbing elements in the bit design. Decades of pressurized drilling and cutting experiments validated these models and constrained the physical behaviour while some coefficients are open for field model learning. This hybrid approach of drilling physics with data learning extends the laboratory results to application in the field. The field learning process included selecting runs in a well for which rock properties model was built. Downhole drilling measurements, known sharp bit design, and measured wear geometry were used for verification. The models derived from this collaborative study resulted in improved worn bit drilling response understanding, and quantitative prediction models, which are foundational frameworks for drilling and economics optimization.


1982 ◽  
Vol 22 (06) ◽  
pp. 911-922 ◽  
Author(s):  
Malgorzata B. Ziaja ◽  
Stefan Miska

Abstract With several limiting assumptions, a mathematical model of the diamond-bit drilling, process has been developed. The model represented by an instantaneous rate-of-penetration equation takes into account the reduction in penetration rate during drilling resulting from bit wear. The model has been tested both under laboratory and under field conditions. The comparison of the theoretical and experimental results has shown reasonable agreement. A method for estimating rock properties also has been established. Using this method, we can find the so-called index of rock strength and the index of rock abrasiveness. Introduction Several published studies concerned with diamond-bit drilling report on rock properties and drillability. drilling fluid additives, diamond wear, and drilling performance theories. Among the factors, that affect diamond-bit drilling performance, the type of formation to be drilled is of utmost importance since it significantly affects the type of bit, the drilling practices. and subsequently the rate of penetration and the drilling cost. The nature of the formation is also one of the main factors in planning deep wells, fracture jobs, mud and cement technologies, etc. For rock properties evaluation as well as for selection of proper drilling practices, several descriptions of the diamond-bit drilling process have been developed. The relevant literature is extensive and is not reviewed in this paper. The objective of this paper is to describe the diamondbit drilling model for surface-set diamond core bits and its application to determining the index of formation strength and the index of formation abrasiveness. The main difference between our model and the models known in literature is that we consider the effect of friction between the diamond cutting surfaces and the rock. A decrease in penetration rate is observed if the drilling parameters, are constant and if the formation is macroscopohomogeneous. Drilling Model The drilling model for a surface-set diamond core bit is subjected to the following limiting assumptions.Rock behavior during cutting with a single diamond may be approximated by a rigid Coulomb plastic material.The active surface of the bit is flat, and diamonds are spherical with diameter. d.The cross-sectional area of the chip formed by a single diamond is equal to the diamond cutting surface and can be established by geometry.During drilling, the neighboring diamonds work together to make a uniform depth of cut (Fig. 1).A number of diamonds forming one equivalent blade have to provide it uniform depth of cut from the inner to the outer diameter of the diamond core bit. so the bit is modeled to be a combination of several equivalent blades (Fig. 2).The diamond distribution technique provides uniform radial coverage that results in equally loaded cutting diamonds.Individual cutting diamonds perform some work that results from the friction between the rock and the diamond.Bit wear is assumed to be gradual while drilling is in progress. Under the preceding assumptions we may state that the drilling rate of the surface-set diamond core bit is a function only of weight on bit (WOB), rotary speed, average density of the diamonds on the bit's active surface, diamond size, core-bit diameters, rock properties, and degree of diamond dullness. The effects of flow rate, differential pressure, hydraulic lift, drilling fluid properties. and drillstring dynamics are ignored. According to Peterson, the penetration rate of the diamond bit, after some modifications, can be described by the following simplified equation. (1) This equation does not include the effect of diamond wear and hence pertains to unworn bits or to when bit dullness is negligible. SPEJ P. 911^


Sign in / Sign up

Export Citation Format

Share Document