Sedimentology, Geochemistry, and Reservoir Potential of the Organic-Rich Tuwaiq Mountain, Hanifa and Jubaila Formations, Abu Dhabi, UAE

2021 ◽  
Author(s):  
Madhujya L. Phukan ◽  
Saad A. Siddiqi ◽  
Abdulla Alblooshi ◽  
Maryam Alshehhi ◽  
Ashis Shashanka ◽  
...  

Abstract Objectives/Scope: The late Callovian to early Kimmeridigian deposited Tuwaiq Mountain, Hanifa and Jubaila Formations are among the most prolific source rocks in the middle east. These sediments have recently been considered as potential unconventional gas reservoir in UAE. This study integrates sedimentological, structural, geochemical and pore-scale datasets to provide a better understanding of the depositional framework and its effects on the reservoir properties. Methods, Procedures, Process: Dunham Classification (1962) which was later modified by Embry & Klovan (1971) is the basis of the descriptive lithofacies scheme used to characterize the organic-rich carbonate sediments. The association of these classified lithofacies based on their genetic relationship reflects their corresponding depositional environments. Petrographical and geochemical assessment including Rock-Eval pyrolysis were performed on selected samples. Mineralogical assessment was performed via whole-rock and clay-fraction XRD analysis, whereas pore-scale fabric/textural investigations were performed via conventional transmitted light microscopy and SEM using backscattered electron mode BS-SEM. Results, Observations, Conclusions: Sedimentological characterization of mud-dominated carbonate sediments indicates that they accumulated in a clastic starved, intrashelf basinal setting. The lack of textural variation is observed, highlighted by the dominance of mudstones noted across the Tuwaiq Mountain Fm., Hanifa and Jubaila Formations. Wackestones are the second most abundant texture observed. Wacke-packstones and packstones are rare but are present in the Tuwaiq Mountain Formation. also dominated by mudstone textures show presence of wackestones in form of thin beds. The occurrences of planktonic foraminifera along with thin shelled bivalves further emphasizes the low-energy, distal depositional setting. A quantitative description of the nature, density, and trends of the fracture network highlights the tectonic and structural history of the sediments. A certain degree of brittleness is associated with the organic-rich sediments, which is evident from the mineralogical analysis showing the abundance of calcite (>82%). Rock-Eval data revealed high TOC content of the sediments. An evaluation of the HI and Tmax indicates that the sediments are dominantly gas prone (HI<150mg HC/g TOC). Based on the calculated reflectance data (Ro: 0.06-3.30), the sediments display varied levels of thermal maturity, from immature to over mature. The vitrinite reflectance equivalent (%VRE) values assessed from microscopic investigations a range between 1.24-1.64, with the lower values suggesting late maturity with wet (condensate) gas generation and the higher values suggesting post maturity with dry gas generation. The TOC and TRA data highlight that the organic-rich, laminated mudstones associated with the Hanifa and Tuwaiq Mountain Formations have the highest TOC values (up to 4.25wt%) and the highest bulk volume (up to 3.39 %BV). It is also noted that the petroleum storage potential in these sediments largely resides with the mineral matrix pores along with the porosity hosted by the organic matter, which has been assessed by BS-SEM analysis. Novel/Additive Information: This integrated approach sheds light on the development of unconventional gas reservoirs. In addition, this study shows how the changes in depositional environment may have controlled the organic matter preservation. For a plausible way forward, this current understanding may be extrapolated to uncored intervals for representativeness.

Facies ◽  
2021 ◽  
Vol 68 (1) ◽  
Author(s):  
Michael A. J. Vitzthum ◽  
Hans-Jürgen Gawlick ◽  
Reinhard F. Sachsenhofer ◽  
Stefan Neumeister

AbstractThe up to 450 m-thick Upper Jurassic Lemeš Formation includes organic-rich deep-water (max. ~ 300 m) sedimentary rocks deposited in the Lemeš Basin within the Adriatic Carbonate Platform (AdCP). The Lemeš Formation was investigated regarding (1) bio- and chemostratigraphy, (2) depositional environment, and (3) source rock potential. A multi-proxy approach—microfacies, Rock–Eval pyrolysis, maceral analysis, biomarkers, and stable isotope ratios—was used. Based on the results, the Lemeš Formation is subdivided from base to top into Lemeš Units 1–3. Deposition of deep-water sediments was related to a late Oxfordian deepening event causing open-marine conditions and accumulation of radiolarian-rich wackestones (Unit 1). Unit 2, which is about 50 m thick and Lower early Kimmeridgian (E. bimammatum to S. platynota, ammonite zones) in age, was deposited in a restricted, strongly oxygen-depleted basin. It consists of radiolarian pack- and grainstones with high amounts of kerogen type II-S organic matter (avg. TOC 3.57 wt.%). Although the biomass is predominantly marine algal and bacterial in origin, minor terrestrial organic matter that was transported from nearby land areas is also present. The overlying Unit 3 records a shallowing of the basin and a return to oxygenated conditions. The evolution of the Lemeš Basin is explained by buckling of the AdCP due to ophiolite obduction and compressional tectonics in the Inner Dinarides. Lemeš Unit 2 contains prolific oil-prone source rocks. Though thermally immature at the study location, these rocks could generate about 1.3 t of hydrocarbon per m2 surface area when mature.


2015 ◽  
Vol 66 (5) ◽  
pp. 409-426 ◽  
Author(s):  
Alexander Zdravkov ◽  
Achim Bechtel ◽  
Stjepan Ćorić ◽  
Reinhard F. Sachsenhofer

Abstract The depositional environments and hydrocarbon potential of the siliciclastic, clayey and carbonate sediments from the Middle Miocene succession in the Varna-Balchik Depression, located in the south-eastern parts of the Moesian Platform, were studied using core and outcrop samples. Based on the lithology and resistivity log the succession is subdivided from base to top into five units. Siliciclastic sedimentation prevailed in the lower parts of units I and II, whereas their upper parts are dominated by carbonate rocks. Unit III is represented by laminated clays and biodetritic limestone. Units IV and V are represented by aragonitic sediments and biomicritic limestones, correlated with the Upper Miocene Topola and Karvuna Formations, respectively. Biogenic silica in the form of diatom frustules and sponge spicules correlates subunit IIa and unit III to the lower and upper parts of the Middle Miocene Euxinograd Formation. Both (sub)units contain organic carbon contents in the order of 1 to 2 wt. % (median: 0.8 for subunit IIa; 1.3 for unit III), locally up to 4 wt. %. Based on Hydrogen Index values (HI) and alkane distribution pattern, the kerogen is mainly type II in subunit IIa (average HI= 324 mg HC/g TOC) and type III in unit III (average HI ~200 mg HC/g TOC). TOC and Rock Eval data show that subunit IIa holds a fair (to good) hydrocarbon generative potential for oil, whereas the upper 5 m of unit III holds a good (to fair) potential with the possibility to generate gas and minor oil. The rocks of both units are immature in the study area. Generally low sulphur contents are probably due to deposition in environments with reduced salinity. Normal marine conditions are suggested for unit III. Biomarker composition is typical for mixed marine and terrestrial organic matter and suggests deposition in dysoxic to anoxic environments.


Author(s):  
Sebastian Grohmann ◽  
Susanne W. Fietz ◽  
Ralf Littke ◽  
Samer Bou Daher ◽  
Maria Fernanda Romero-Sarmiento ◽  
...  

Several significant hydrocarbon accumulations were discovered over the past decade in the Levant Basin, Eastern Mediterranean Sea. Onshore studies have investigated potential source rock intervals to the east and south of the Levant Basin, whereas its offshore western margin is still relatively underexplored. Only a few cores were recovered from four boreholes offshore southern Cyprus by the Ocean Drilling Program (ODP) during the drilling campaign Leg 160 in 1995. These wells transect the Eratosthenes Seamount, a drowned bathymetric high, and recovered a thick sequence of both pre- and post-Messinian sedimentary rocks, containing mainly marine marls and shales. In this study, 122 core samples of Late Cretaceous to Messinian age were analyzed in order to identify organic-matter-rich intervals and to determine their depositional environment as well as their source rock potential and thermal maturity. Both Total Organic and Inorganic Carbon (TOC, TIC) analyses as well as Rock-Eval pyrolysis were firstly performed for the complete set of samples whereas Total Sulfur (TS) analysis was only carried out on samples containing significant amount of organic matter (>0.3 wt.% TOC). Based on the Rock-Eval results, eight samples were selected for organic petrographic investigations and twelve samples for analysis of major aliphatic hydrocarbon compounds. The organic content is highly variable in the analyzed samples (0–9.3 wt.%). TS/TOC as well as several biomarker ratios (e.g. Pr/Ph < 2) indicate a deposition under dysoxic conditions for the organic matter-rich sections, which were probably reached during sporadically active upwelling periods. Results prove potential oil prone Type II kerogen source rock intervals of fair to very good quality being present in Turonian to Coniacian (average: TOC = 0.93 wt.%, HI = 319 mg HC/g TOC) and in Bartonian to Priabonian (average: TOC = 4.8 wt.%, HI = 469 mg HC/g TOC) intervals. A precise determination of the actual source rock thickness is prevented by low core recovery rates for the respective intervals. All analyzed samples are immature to early mature. However, the presence of deeper buried, thermally mature source rocks and hydrocarbon migration is indicated by the observation of solid bitumen impregnation in one Upper Cretaceous and in one Lower Eocene sample.


2017 ◽  
Vol 5 (2) ◽  
pp. SF225-SF242 ◽  
Author(s):  
Xun Sun ◽  
Quansheng Liang ◽  
Chengfu Jiang ◽  
Daniel Enriquez ◽  
Tongwei Zhang ◽  
...  

Source-rock samples from the Upper Triassic Yanchang Formation in the Ordos Basin of China were geochemically characterized to determine variations in depositional environments, organic-matter (OM) source, and thermal maturity. Total organic carbon (TOC) content varies from 4 wt% to 10 wt% in the Chang 7, Chang 8, and Chang 9 members — the three OM-rich shale intervals. The Chang 7 has the highest TOC and hydrogen index values, and it is considered the best source rock in the formation. Geochemical evidence indicates that the main sources of OM in the Yanchang Formation are freshwater lacustrine phytoplanktons, aquatic macrophytes, aquatic organisms, and land plants deposited under a weakly reducing to suboxic depositional environment. The elevated [Formula: see text] sterane concentration and depleted [Formula: see text] values of OM in the middle of the Chang 7 may indicate the presence of freshwater cyanobacteria blooms that corresponds to a period of maximum lake expansion. The OM deposited in deeper parts of the lake is dominated by oil-prone type I or type II kerogen or a mixture of both. The OM deposited in shallower settings is characterized by increased terrestrial input with a mixture of types II and III kerogen. These source rocks are in the oil window, with maturity increasing with burial depth. The measured solid-bitumen reflectance and calculated vitrinite reflectance from the temperature at maximum release of hydrocarbons occurs during Rock-Eval pyrolysis ([Formula: see text]) and the methylphenanthrene index (MPI-1) chemical maturity parameters range from 0.8 to [Formula: see text]. Because the thermal labilities of OM are associated with the kerogen type, the required thermal stress for oil generation from types I and II mixed kerogen has a higher and narrower range of temperature for hydrocarbon generation than that of OM dominated by type II kerogen or types II and III mixed kerogen deposited in the prodelta and delta front.


2003 ◽  
Vol 43 (1) ◽  
pp. 117 ◽  
Author(s):  
C.J. Boreham ◽  
J.E. Blevin ◽  
A.P. Radlinski ◽  
K.R. Trigg

Only a few published geochemical studies have demonstrated that coals have sourced significant volumes of oil, while none have clearly implicated coals in the Australian context. As part of a broader collaborative project with Mineral Resources Tasmania on the petroleum prospectivity of the Bass Basin, this geochemical study has yielded strong evidence that Paleocene–Eocene coals have sourced the oil and gas in the Yolla, Pelican and Cormorant accumulations in the Bass Basin.Potential oil-prone source rocks in the Bass Basin have Hydrogen Indices (HIs) greater than 300 mg HC/g TOC. The coals within the Early–Middle Eocene succession commonly have HIs up to 500 mg HC/g TOC, and are associated with disseminated organic matter in claystones that are more gas-prone with HIs generally less than 300 mg HC/g TOC. Maturity of the coals is sufficient for oil and gas generation, with vitrinite reflectance (VR) up to 1.8 % at the base of Pelican–5. Igneous intrusions, mainly within Paleocene, Oligocene and Miocene sediments, produced locally elevated maturity levels with VR up to 5%.The key events in the process of petroleum generation and migration from the effective coaly source rocks in the Bass Basin are:the onset of oil generation at a VR of 0.65% (e.g. 2,450 m in Pelican–5);the onset of oil expulsion (primary migration) at a VR of 0.75% (e.g. 2,700–3,200 m in the Bass Basin; 2,850 m in Pelican–5);the main oil window between VR of 0.75 and 0.95% (e.g. 2,850–3,300 m in Pelican–5); and;the main gas window at VR >1.2% (e.g. >3,650 m in Pelican–5).Oils in the Bass Basin form a single oil population, although biodegradation of the Cormorant oil has resulted in its statistical placement in a separate oil family from that of the Pelican and Yolla crudes. Oil-to-source correlations show that the Paleocene–Early Eocene coals are effective source rocks in the Bass Basin, in contrast to previous work, which favoured disseminated organic matter in claystone as the sole potential source kerogen. This result represents the first demonstrated case of significant oil from coal in the Australian context. Natural gases at White Ibis–1 and Yolla–2 are associated with the liquid hydrocarbons in their respective fields, although the former gas is generated from a more mature source rock.The application of the methodologies used in this study to other Australian sedimentary basins where commercial oil is thought to be sourced from coaly kerogens (e.g. Bowen, Cooper and Gippsland basins) may further implicate coal as an effective source rock for oil.


1999 ◽  
Vol 39 (1) ◽  
pp. 322 ◽  
Author(s):  
G.M. Carlsen ◽  
S.N. Apak ◽  
K.A.R. Ghori K. Grey ◽  
M.K. Stevens

The sedimentology, palaeontology and geochemistry of Neoproterozoic, organic-rich, clastic and related carbonate deposits in Western Australia provide new insights into the first-order depositional controls on hydrocarbon source rocks in the Neoproterozoic. Organic facies are correlated with depositional facies, revealing the impact of organic productivity and transport of organic rich sediments on the accumulation of organic matter in different depositional environments. Sedimentation is largely limited to ramp, platform, shoal, lagoon and sabkha environments.Growth of benthic organisms in the photic zone was the primary process controlling the production of organic matter in the ramp-shoreline system of the Kanpa Formation. Storms and floods were the primary mechanism for moving organic rich sediments into dysoxic and anoxic depositional environments. Variations in organic facies are indicated by: 1) changes in the palynomorph assemblages, particularly the increase in acritarchs within shallow-water ramp facies and cyanobacterial filaments in quiet-water sediments; 2) organic-rich laminae, containing abundant cyanobacterial filaments and mat material; and 3) the oxidation state of preserved organic remains.Periods of high organic growth rates or periods of mass mortality may have led to the development of an anoxic zone at the water-sediment interface. In the shoal and lagoonal settings, higher rates of clastic sediment dilution combined with oxygenated conditions resulted in lower TOC and hydrogen depleted organic facies.Condensed sections overlying stromatolitic dolomites represent the most effective organic facies of all of the potential source laminae sampled in Empress–IA. Most of the Officer Basin succession is currently within the oil-generating window and hydrocarbon shows encourage further exploration.


Author(s):  
Magdalena Sikorska-Jaworowska

Petrologic investigations of Upper Cambrian and Tremadocian deposits were carried out in the Narol region (southern Lublin region) in prospecting for shale gas accumulations. The observations and analyses were made using a polarizing microscope, luminoscope (CL) and scanning microscope (BSE, SE, EDS, SEM-CL). The following analyses were performed: CL-spectral analysis of quartz, X-ray structural analysis of clay fraction, and pyrolytic analysis of organic matter. The rocks under study are represented mainly by clay-silt shales with sandy interbeds. They belong to the epicontinental siliciclastic association deposited on an extensive shelf subjected to tidal and storm action. The shales consist largely of illite, and the silt fraction is represented by quartz with a small admixture of feldspars. Quartz cement is common (growths and aggregates of authigenic quartz), while carbonate cement (calcite, Fe-dolomite/ ankerite and siderite), as well as pyrite, kaolinite and phosphate cements are rare. The shales reveal microporosity in the form of “microchannels” paralleling illite plates, and within mica packets. The micropores (1–2 µm in size) are observed in both the carbonate cement and organic matter. As a result of deep burial and intense diagenetic processes, the organic matter has undergone strong alteration (max. Ro = 2.5%). The vitrinite reflectance index and pyrolitic analysis of organic matter, as well as the highly ordered illite structure, indicate the maximum palaeotemperatures in the range of 120–150°C. The rocks show numerous fractures healed with carbonates and/or quartz. Some of the fractures that run parallel to the lamination (or more rarely those running perpendicular or at a high angle) have remained open and are potential pathways of hydrocarbon migration. Pyrolytic analysis shows that the shales do not represent source rocks. It is supposed that they do not represent reservoirs for unconventional hydrocarbon accumulations.


2014 ◽  
Vol 977 ◽  
pp. 308-311
Author(s):  
Hai Tao Xue ◽  
Guo Dong Mu ◽  
Shan Si Tian ◽  
Shuang Fang Lu

The organic matter of marine strata has high degree of thermal evolution in Sichuan Basin. The gas generation ability of kerogen is very limited, which mainly relies on the soluble organic matter as gas parent material to provide gas source for gas reservoir. In this paper, chemical kinetics method and experiments are applied to study on the history of gas generation and gas generation rate of organic matter in Sichuan marine strata. Result shows that dissipated soluble organic matter in source rocks, dissipated soluble organic matter out of source rocks and organic matter in paleo-reservoir successively generate gas in proper order. Dissipated soluble organic matter out of source rocks and the oil in paleo-reservoir belong to late gas generation.


1994 ◽  
Vol 34 (1) ◽  
pp. 279 ◽  
Author(s):  
Dennis Taylor ◽  
Aleksai E. Kontorovich ◽  
Andrei I. Larichev ◽  
Miryam Glikson

Organic rich shale units ranging up to 350 m in thickness with total organic carbon (TOC) values generally between one and ten per cent are present at several stratigraphic levels in the upper part of the Carpentarian Roper Group. Considerable variation in depositional environment is suggested by large differences in carbon:sulphur ratios and trace metal contents at different stratigraphic levels, but all of the preserved organic matter appears to be algal-sourced and hydrogen-rich. Conventional Rock-Eval pyrolysis indicates that a type I-II kerogen is present throughout.The elemental chemistry of this kerogen, shows a unique chemical evolution pathway on the ternary C:H:ONS diagram which differs from standard pathways followed by younger kerogens, suggesting that the maturation histories of Proterozoic basins may differ significantly from those of younger oil and gas producing basins. Extractable organic matter (EOM) from Roper Group source rocks shows a chemical evolution from polar rich to saturate rich with increasing maturity. Alginite reflectance increases in stepwise fashion through the zone of oil and gas generation, and then increases rapidly at higher levels of maturation. The increase in alginite reflectance with depth or proximity to sill contacts is lognormal.The area explored by Pacific Oil and Gas includes a northern area where the Velkerri Formation is within the zone of peak oil generation and the Kyalla Member is immature, and a southern area, the Beetaloo sub-basin, where the zone of peak oil generation is within the Kyalla Member. Most oil generation within the basin followed significant folding and faulting of the Roper Group.


Sign in / Sign up

Export Citation Format

Share Document